भूविज्ञान पाटमाला-1

कीयला

एक परिचय

लेखक प्रो. राममूर्ति सिंह एवं प्रो. देवव्रत चंद्र

वैज्ञानिक तथा तकनीकी शब्दावली आयोग मानव संसाधन विकास मंत्रालय (शिक्षा विभाग) भारत सरकार

भूविज्ञान पाटमाला-1

कोयला : एक परिचय

लेखक प्रो. राममूर्ति सिंह

पूर्व अध्यक्ष, भू-विज्ञान विभाग, काशी हिंदू विश्वविद्यालय, वाराणसी एवं

प्रो. देवव्रत चंद्र

पूर्व प्रोफेसर, इंडियन स्कूल ऑफ माइन्स, धनबाद एवं एमेरिटस प्रोफेसर, सी.एस.आई.आर.

वैज्ञानिक तथा तकनीकी शब्दावली आयोग (मानव संसाधन विकास मंत्रालय) शिक्षा विभाग भारत सरकार 1999 © भारत सरकार, 1999 Government of India, 1999

प्रथम ई-संस्करण, 2019

प्रकाशक

वैज्ञानिक तथा तकनीकी शब्दावली आयोग मानव संसाधन विकास मंत्रालय (शिक्षा विभाग) पश्चिमी खंड-7, रामकृष्णपुरम्, नई दिल्ली - 110 066

मूल्य: देश में रु.

विदेश में पौंड/डॉलर

विक्री हेतु संपर्क

- (1) बिक्री एकक वैज्ञानिक तथा तकनीकी शब्दावली आयोग पश्चिमी खंड-7, रामकृष्णपुरम्, नई दिल्ली - 110 066
- (2) प्रकाशन नियंत्रक प्रकाशन विभाग, भारत सरकार सिविल लाइन्स, दिल्ली-110 054

अध्यक्ष की कलम से

वैज्ञानिक तथा तकनीकी शब्दावली आयोग, उच्चतर शिक्षा विभाग, मानव संसाधन विकास मंत्रालय, भारत सरकार, 1961 में अपनी स्थापना समय से ही, उसे सौंपे गए कार्य-भार अनुसार भारतीय भाषाओं में शिक्षा माध्यम परिवर्तन हेतु विभिन्न विषयों में भारतीय भाषाओं की मानक शब्दावली तथा विश्वविद्यालय स्तरीय विभिन्न विषयक पुस्तकों का निर्माण एवं प्रकाशन करता आ रहा है । इस दीर्घ अविध में आयोग ने विभिन्न आवश्यक विषयों से संबंधित अंग्रेजी-हिंदी तथा अन्य भारतीय भाषा शब्दाविलयों का निर्माण एवं प्रकाशन किया है । इक्कीसवीं सदी के सूचना प्रौद्योगिकी के इस दौर में शिक्षा एवं ज्ञानार्जन के साधन को सद्यः उपलब्धता में क्रांतिकारी परिवर्तन आया है । ई-गवर्नेंस, ई-व्यवसाय एवं डिजिटल इंडिया जैसे क्रिया-कलाप दैनंदिन जीवन के अंग हो गए हैं। ऐसे में आयोग ने भी इन अधुनातन साधनों का उपयोग करने का निश्चय किया । इस क्रम में आयोग द्वारा निर्मित सभी शब्दाविलयों, परिभाषा-कोशों का ई-संस्करण आपको सहज रूप से उपलब्ध कराने के उद्देश्य से ई-बुक निर्माण योजना पर कार्य प्रारंभ किया गया है । इसी उद्देश्य की पूर्ति हेतु 'कोयला एक परिचय' का ई-बुक का संस्करण प्रकाशित किया जा रहा है।

मुझे इस पुस्तक का ई-संस्करण आप सबको सुलभ कराते हुए अत्यंत हर्ष हो रहा है। इसी भांति आयोग द्वारा अन्य विषयों के भी हिंदी तथा अन्य भारतीय भाषाओं की शब्दावली, परिभाषा-कोशों का ई-संस्करण प्रकाशित करने के कार्य भी प्रगति पर है। आयोग को सौंपे गए महत्वपूर्ण दायित्व में से एक दायित्व, निर्मित शब्दवलियाँ प्रयोक्ताओं तक पहुँचाने का रहा है। इलेक्ट्रोनिक माध्यम से आयोग अपने प्रकाशनों के प्रचार-प्रसार में अधिक प्रभावशाली होगा। मुझे आशा है आयोग द्वारा किए जा रहे इस प्रयास से निर्मित शब्दावलियाँ जन-जन तक पहुंचेगी साथ ही सभी जिजासु इस ई-संस्करण का अधिक से अधिक लाभ उठा सकेंगे।

प्रो. अवनीश कुमार

अवनाश कुमार अध्यक्ष

कोयला एक परिचय ई-शब्द संग्रह निर्माण से संबद्ध आयोग के अधिकारी

प्रधान संपादक

प्रो. अवनीश कुमार अध्यक्ष

संपादक

डॉ. अशोक एन. सेलवटकर (सहायक निदेशक)

श्री शिव कुमार चौधरी (सहायक निदेशक)

श्री जय सिंह रावत (सहायक वैज्ञानिक अधिकारी)

श्रीमती चक्प्रम बिनोदिनी देवी (सहायक वैज्ञानिक अधिकारी)

सुश्री मर्सी ललरोहलू हमार (सहायक वैज्ञानिक अधिकारी)

आयोग के अध्यक्ष एवं सदस्य

अध्यक्ष

डा. राय अवधेश कुमार श्रीवास्तव

सदस्य

- डॉ. अनूप चोपड़ा प्रोफेसर, ई.एन.टी. लोकनायक जयप्रकाश नारायण अस्पताल, नई दिल्ली
- प्रो. कीर्ति सिंह सदस्य कृषि वैज्ञानिक चयन बोर्ड, पूसा, नई दिल्ली
- प्रो. बी.डी. नौटियाल सिविल इंजीनियरी विभाग, बनारस हिंदू विश्वविद्यालय, वाराणसी

- श्री डी.बी. डिमरी
 पूर्व महानिदेशक,
 भारतीय भूवैज्ञानिक सर्वेक्षण,
 कलकत्ता
- प्रो. प्रेम सिंह भाषा विज्ञान विभाग, दिल्ली विश्वविद्यालय, दिल्ली
- प्रो. लक्ष्मण सिंह कोठारी पूर्व अध्यक्ष, भौतिकी विभाग, दिल्ली विश्वविद्यालय, दिल्ली

पुनरीक्षण एवं संपादन

प्रधान संपादक

डा. राय अवधेश कुमार श्रीवास्तव

संपादक

श्री दुर्गा प्रसाद मिश्र

पुनरीक्षक

डॉ. (श्रीमती) बलविंदर शुक्ला

भाषा-परामर्श

श्री देवेंद्र दत्त नौटियाल

प्रकाशन

श्री सत्यपाल अरोड़ा डॉ. पी.एन. शुक्ल श्री आलोक वाही

प्रस्तावना

भारत सरकार ने विश्वविद्यालय स्तर पर शिक्षा-माध्यम के रूप में हिंदी तथा अन्य भारतीय भाषाओं के विकास के लिए तत्कालीन शिक्षा मंत्रालय (अब मानव संसाधन विकास मंत्रालय) के अधीन सन् 1961 में वैज्ञानिक तथा तकनीकी शब्दावली आयोग की स्थापना की। इस लक्ष्य की प्राप्ति के लिए आयोग ने अनेक शब्द-संग्रहों, परिभाषा कोषों, चयनिकाओं, पत्रिकाओं, पाठमालाओं तथा विश्वविद्यालय-स्तरीय हिंदी पुस्तकों का निर्माण एवं प्रकाशन किया है।

पाठमालाओं के निर्माण में इस बात का ध्यान रखा गया है कि उनकी विषय-सामग्री अद्यतन तथा उपयोगी हो और भाषा सरल, बोधगम्य एवं आकर्षक हो ताकि अध्यापक भी हिंदी माध्यम से अपने-अपने विषय को पढ़ाने में सक्षम हो सकें।

प्रस्तुत पाठमाला 'कोयला : एक परिचय' काशी हिंदू विश्वविद्यालय के भू-विज्ञान विभाग के भूतपूर्व प्रोफेसर तथा विभागाध्यक्ष डॉ. राममूर्ति सिंह एवं प्रो. देवव्रत चंद्र, इंडियन स्कूल ऑफ माइन्स, तथा एमेरिटस वैज्ञानिक, सी.एस.आई.आर. ने मिलकर लिखी है। कोयला-विज्ञान से घनिष्ठ रूप से जुड़े इन दोनों सुधी वैज्ञानिकों की यह कृति कोयले के विभिन्न तकनीकी पक्षों को उजागर तो करती ही है, साथ ही पूरी सामग्री को भारतीय संदर्भ के परिप्रेक्ष्य में भी प्रस्तुत करती है। विषय का प्रतिपादन इस तरह किया गया है कि वह सभी वैज्ञानिकों, अनुसंधान-कर्ताओं, प्राध्यापकों एवं प्रशिक्षणार्थियों के लिए अत्यंत उपयोगी निर्देशिका सिद्ध होगी।

विद्वान लेखकद्वय ने इस पुस्तक में कोयला खनन का इतिहास, कोयले के प्रकार, कोयला संस्तर, कोयले के गुण, भारत के कोयला क्षेत्र, कोयला श्रेणीकरण एवं कोयले से संबंधित सभी आवश्यक मूलभूत जानकारी सरल शब्दों में प्रस्तुत की है। इसके पुनरीक्षण में डॉ. (श्रीमती) बलबिंदर शुक्ला तथा भाषा संपादन में आयोग के पूर्व सचिव श्री देवेंद्र दत्त नौटियाल ने भी हमें सहयोग दिया है।

प्रस्तुत पाठमाला में वैज्ञानिक तथा तकनीकी शब्दावली आयोग की शब्दावली का प्रयोग किया गया है और पुस्तक के अंत में हिंदी-अंग्रेजी तथा अंग्रेजी-हिंदी शब्द सूचियां भी दी गई हैं।

मुझे विश्वास है कि भू-विज्ञान पाठमाला की यह पुस्तक विश्वविद्यालय-स्तरीय कोयला-विज्ञान विषय के छात्रों, अनुसंधानकर्ताओं एवं प्रयोगकर्ताओं के लिए बहुत उपयोगी सिद्ध होगी।

नई दिल्ली जनवरी, 1999

(डा. राय अवधेश कुमार श्रीवास्तव)

प्राक्कथन

विश्व के बहुत से देशों में बढ़ते हुए उद्योगों की अधिक संख्या के कारण ऊर्जा उत्पादन का महत्व निरंतर बढ़ता जा रहा है। वास्तव में किसी देश के आर्थिक विकास की दृढ़ता का आधार उसकी आवश्यकतानुसार पर्याप्त ऊर्जा का उत्पादन ही है। विश्व-स्तर पर खनिज तेल और कोयला ऊर्जा के प्रमुख साधन हैं। खनिज तेल का अत्यंत सीमित भंडार होने के कारण भविष्य में भी कोयले के ऊर्जा का प्रधान स्रोत रहने की संभावना है। यही स्थिति भारत में भी है।

पिछले लगभग चार दशकों से कोयले के अध्ययन, अध्यापन और अन्वेषण से जुड़े रहने के कारण हमने सबसे पहले अपनी राजभाषा हिंदी के माध्यम से 'कोयला : एक परिचय' नामक पुस्तक प्रस्तुत करने का प्रयास किया है। आशा है, कोयले से जुड़े हुए विद्यार्थी, अध्यापक, वैज्ञानिक, उपभोक्ता एवं सामान्य नागरिक इससे लाभान्वित होंगे।

हम भारत सरकार के वैज्ञानिक तथा तकनीकी शब्दावली आयोग के अध्यक्ष एवं उनके सहयोगियों के हृदय से आभारी हैं जिनकी प्रेरणा और अविरल प्रयास से इस पुस्तक का लेखन संभव हो सका। भारतीय भू-वैज्ञानिक सर्वेक्षण (कोयला स्कंध) के उपमहानिदेशक एवं निदेशक (प्रचार एवं सूचना) को सहयोग के लिए हमारा हार्दिक धन्यवाद है।

हम अपने सभी पाठकों और विशेषज्ञों के विचार जानने के लिए उत्सुक रहेंगे।

राममूर्ति सिंह देवव्रत चंद्र

विषय - सूची

क्रम संख्या		पृष्ठ
1.	विषय-प्रवेश	1
2.	भारतवर्ष में कोयला खनन का इतिहास	1
3.	कोयले के प्रकार	3
	(अ) सैप्रोपेली कोयला	3
	(ब) ह्यूमसी कोयला	3
	(क) पीट	4
	(ख) लिग्नाइट	4
	(ग) उपबिटुमेनी कोयला (लिग्नाइटी कोयला या काला	लेग्नाइट) 5
	(घ) बिटुमेनी कोयला	5
	(ङ) अंश ऐन्थ्रासाइट	5
	(र) ऐन्थ्रासाइट	5
4.	कोयले की उपस्थिति की अवस्था	6
5.	कोयला संस्तरों में विक्षोभ	6
6.	कोयला संस्तरों में संरचनाएँ	7
7.	ताप से प्रभावित कोयले	7
8.	कोयला संस्तरों में गैस	8
9.	कोयले का आँखों देखा रूप	9
	(i) विट्रेन	9
	(ii) क्लेरेन	10
	(iii) डूरिअन	10
	(iv) फ्यूजेन	10
10.	सूक्ष्मदर्शी से देखने पर कोयले का रूप	10
	(i) संचारित प्रकाश सूक्ष्मदर्शी से	10
	(ii) परावर्ती प्रकाश सूक्ष्मदर्शी से	10
11.	कोयले के भौतिक एवं रासायनिक गुण	11

	(अ) भौतिक गुण	11
	(ब) रासायनिक गुण	13
12.	कोककारी कोयला	15
13.	तापन मूल्य	16
14.	कोयले की उत्पत्ति	16
	(i) वनस्पतिक पदार्थों का संचयन	17
	(क) स्वस्थाने सिद्धांत	18
	(ख) विस्थापन सिद्धांत	18
	(ii) वनस्पतिक पदार्थों का कोयले में रूपांतरण	20
	(i) जीव-रासायनिक अवस्था	20
	(ii) भू-रासायनिक अवस्था	20
15.	भारत में कोयला	23
16.	भारत के कोयला क्षेत्र (भौगोलिक वितरण)	27
	(i) गोंडवाना कोयला	27
	1. हिमालय क्षेत्र	28
	2. राजमहल क्षेत्र	28
	3. वीरभूमि कोयला क्षेत्र	28
	4. देवघर क्षेत्र	28
	5. गिरिडीह समूह के कोयला क्षेत्र	28
	6. दामोदर घाटी कोयला क्षेत्र	28
	(अ) रानीगंज कोयला क्षेत्र	29
	(ब) झरिया कोयला क्षेत्र	29
	(स) बोकारो कोयला क्षेत्र	30
	(द) करनपुरा कोयला क्षेत्र	30
	(य) रामगढ़ कोयला क्षेत्र	30
	7. पलामू कोयला क्षेत्र	30
	8. सोनघाटी कोयला क्षेत्र	31
	मध्य प्रदेश में छत्तीसगढ कोयला क्षेत्र	31

	10. महानदी घाटी कोयला क्षेत्र	31
	11. सतपुरा इलाका	32
	12. नागपुर इलाका	32
	13. वर्धा घाटी कोयला क्षेत्र	32
	14. गोदावरी घाटी कोयला क्षेत्र	32
	(ii) तृतीय कल्प के कोयले एवं लिग्नाइट	32
	15. कोयले एवं लिग्नाइट	32
	16. पीट	32
17.	भारतीय कोयले की विशिष्टता	39
18.	कोयले का श्रेणीकरण	39
19.	कोयला निचय	42
20.	कोयला-खनन की विधियाँ	63
21.	कोयले का उत्पादन	64
22.	कोयले की तैयारी	68
23.	कोयले का उपयोग	69
24.	कोयले की खपत का प्रतिमान	72
25.	कोयले का निर्यात	74
26.	कोयले का आयात	74
27.	कोयला और प्रदूषण	74
28.	कोयले का संरक्षण	75
29.	कोयले की भावी आवश्यकता	76
	परिशिष्ट	
	1. हिंदी-अंग्रेजी शब्द-सूची	94
	२ अंग्रेजी-हिंटी शब्द-सची	

सारणी-सूची

सारणी संख्या	शीर्षक	पृष्ठ
1.	लकड़ी से ऐन्थ्रासाइट में रूपान्तरण के बीच रासायनिक संघटन में परिवर्तन (प्रतिशत में)	12
2.	कोयले का निर्माण	17
3.	भौमिकीय समय-मापक्रम	22
4.	भारत में कोयला निक्षेपों का भूवैज्ञानिक वितरण	23-24
5.	भारत में राज्यवार कोयला क्षेत्रों का वितरण	26-27
6.	भारत के विभिन्न कोयला क्षेत्रों के कोयले के रासायनिक गुण	33-38
7.	भारत के कोककारी कोयले की व्यापारिक श्रेणी	39
8.	भारतीय कोयले का वर्गीकरण एवं कोककारी कोयले की विशिष्टता (भारतीय मानकः 770-1977 के अनुसार)	40-41
9.	अकोककारी कोयले की श्रेणी	42
10.(अ)	भारत के विभिन्न राज्यों में कोयला निचय	43-50
10.(ৰ)	भारत के गोंडवाना तथा तृतीय कल्प के कोयला क्षेत्र और उपलब्ध कोयले की श्रेणी	51-59
10.(स)	भारत में राज्यवार कोयला निचय (1.1.96 की स्थिति)	60-61
10.(द)	भारत के कोयला निचय में लगातार वृद्धि (1993-1996)	62
11.	भारत में कोयले (लिग्नाइट सहित) का वार्षिक उत्पादन	65
12.	भारत के विभिन्न राज्यों में कोयले का वार्षिक उत्पादन	66
13.	विक्रय के लिये कोयले के विभिन्न आकार	67
14.	भारत में विभिन्न माध्यमों द्वारा कोयले (लिग्नाइट को छोड़कर) का वार्षिक उपयोग	73
15.	भारत से कोयले का निर्यात	74
16.	भारत में कोयले का आयात	74

चित्र-सूची

चित्र संख्या	शीर्षक	पृष्त
1.(왕)	एक कोयला संस्तर	78
1.(ৰ)	कोयले एवं सहचारी शैलों का स्तरीय	79
	वितरण (कोरबा कोयला क्षेत्र)	
2.(अ)	बलित कोयला संस्तर	80
2.(ৰ)	भ्रंशित कोयला संस्तर	80
3.	विभाजित कोयला संस्तर	81
4.	कोयले में क्लीट (संधि-समूह)	81
5.(3)	कोयले में अंतः स्थापित कोयला बाल	82
5.(ৰ)	कोयला बॉल (कोयला संस्तर से अलग)	82
6.(3)	एक कोल बॉल	83
6.(ৰ)	कोल बॉल में वनस्पित संरचना	83
7.(अ), (ब)	ताप से प्रभावित कोयला	84
8.(왕)	कोयले में पट्टित घटक	85
8.(ৰ)	कोयले में खनिज	85
8.(स)	लिग्नाइट में राल	86
9.(到)	कोयले की पार्श्वदर्शी काट	86
9.(ৰ)	कोयले का पालिश किया हुआ खंड	87
9.(स)	संचारित प्रकाश सूक्ष्मदर्शी में देखने पर कोयले का रूप	87
10.	परावर्ती प्रकाश सूक्ष्मदर्शी में देखने पर कोयले का रूप	88
11.	कवकी काय	88
12.	कोयला संस्तर में सीधा खड़ा वृक्ष का तना	89
13.	भारत के कोयला एवं लिग्नाइट क्षेत्र	90
14.	भारत में राज्यवार कोयला निचय (प्रतिशत)	91
14.(अ)	भारत में राज्यवार कोयला उत्पादन (प्रतिशत)	92
15	कोलतार (अलकतरा) के उत्पाद	03

कोयला: एक परिचय

1. विषय-प्रवेश : हमारी प्राकृतिक संपदा में कोयले का महत्वपूर्ण स्थान है। भारतवर्ष में खिनज उत्पादों के मूल्य में इसका अंशदान लगभग 60 प्रतिशत है। इसके अतिरिक्त यह भारत का सर्वाधिक महत्वपूर्ण व्यावसायिक एवं घरेलू ऊर्जा का स्रोत भी है।

कोयला शब्द की उत्पत्ति संस्कृत 'काल' से हुई है। विभिन्न भाषाओं में इसके पर्यायवाची शब्द हैं, जैसे—कोल (स्वीडिश), कोले (ऐंग्लो-सैक्सन), कोहले (जर्मन), कोल्हन (कार्निश)।

भारतवर्ष में वैदिक काल से ही कोयले के अस्तित्व का ज्ञान था। कोयला जैसे भूमिगत पदार्थ का वर्णन यजुर्वेद (1160-1000 ई॰ पू॰) में मिलता है। खनन क्षेत्रों एवं स्थानों के नाम हमारे देश में अनंतकाल से ही कोयले के उपयोग की जानकारी देते हैं। उदाहरण के लिये धनबाद क्षेत्र में एक स्थान का नाम है अंगार पथरा (अंगार = कोयला, पथरा = पत्थर) अर्थात् कोयला-पत्थर। इसी प्रकार दूसरा नाम 'काली पहाड़ी' अर्थात् काले रंग की पहाड़ी यानी कोयले का पहाड़ है। बराकर का अर्थ श्रेष्ठ अयस्क अथवा खनिज है और हम जानते हैं कि उच्च कोटि का पर्याप्त कोयला भंडार बराकर में पाया जाता है। भारतवर्ष में दामोदर नदी की घाटी में व्यावसायिक स्तर पर कोयला-खनन का कार्य आरंभ किया गया और 'दामोदर' का अर्थ है 'जिसके उदर में आग हो'।

2. भारतवर्ष में कोयला खनन का इतिहास : भारतवर्ष में कोयला खनन का प्रथम लिखित प्रमाण 11 अगस्त 1774 को लिखे गए एक पत्र से मिलता है जिसमें जे समर एवं एस.जी.हेटली ने वारेन हेस्टिंग्ज से रानीगंज कोयला क्षेत्र के सीतारामपुर में कोयला खनन के लिए आवेदन किया था। सीतारामपुर में खनन का कार्य 1774 में ही आरंभ हो गया और उसके बाद रानीगंज एवं अजय नदी के आस-पास के क्षेत्रों में कोयले की खोज की गई।

सबसे पहले रेलों के संचालन में भाप इंजनों का प्रयोग 16 अप्रैल 1853 मुंबई और ठाणे के बीच और 15 अगस्त 1854 (हावड़ा और हुगली के बीच) को हुआ। इसके बाद रेलों के विस्तार के साथ-साथ कोयले का महत्व भी क्रमशः बढ़ता ही गया। सन् 1872 में बर्दबान जिले के रानीगंज सब डिवीजन में मुख्य रूप से 44 कोयले की खदानों से कोयले का उत्पादन हो रहा था।

भारत में कोयला उद्योग का तेजी से विकास सन 1878 में आरंभ हुआ जब भाप के इंजनों का उपयोग पोत परिवहन में होने से कोयले की माँग बहुत बढ़ गई। खदानों से निकाला गया कोयला दामोदर नदी द्वारा आमता लाया जाता था और फिर वहाँ से कलकत्ता ले भेजा जाता था।

लगभग 200 वर्षों तक भारत में कोयला खनन का काम निजी उदयमियों दवारा किया जाता रहा। बाद में भारत सरकार ने दो चरणों में इस उदयोग का राष्ट्रीयकरण किया। 214 कोककारी कोयले की खानों का प्रबंध अक्टूबर 1971 में भारत सरकार ने अपने हाथ में लिया और 1 जनवरी 1972 को "भारत कोकिंग कोल लिमिटेड" का गठन किया गया तथा 1 मई 1972 को अधिप्रहण की हुई सभी खानों का दायित्व इस संगठन को सौंप दिया गया। इसके ठीक एक वर्ष बाद 1 मई 1973 को 700 से अधिक अकोककारी कोयला खानों का राष्ट्रीयकरण किया गया और इनका प्रबंध कोयला खान प्राधिकरण लिमिटेड (सी.एम.ए.एल) के अधीन रखा गया। बाद में 1 नवंबर 1975 को कोयला खान प्राधिकरण लिमिटेड और भारत कोकिंग कोल लिमिटेड को मिलाकर कोल इंडिया लिमिटेड (सी.आई.एल) का गठन किया गया और कोयला उदयोग के संपूर्ण विकास का कार्य इस संस्था को सौंपा गया। भारत कोकिंग कोल लिमिटेड. कोल इंडिया लिमिटेड की एक सहायक संस्था बन गई। साथही तीन और कोयला कंपनियों सेन्ट्रल कोलफील्ड्स लिमिटेड (सी.सी.एल), ईस्टर्न कोलफील्ड्स लिमिटेड (ई.सी.एल.), वेस्टर्न कोल फील्ड्स लिमिटेड (डब्ल्य्.सी.एल.) तथा केन्द्रीय खनन योजना एवं प्रारूप संस्थान (सी. एम. पी. डी. आई. एल) का गठन किया गया। बाद, में कोल इंडिया लिमिटेड के अधीन दो और कंपनियाँ नार्दर्न कोल फील्ड्स लिमिटेड (एसई.सी.एल.) का गठन किया गया। असम में नार्थ ईस्टर्न कोलफील्डस की कोयला खानों का प्रशासन सीधे कोल इंडिया लिमिटेड के हाथों में हैं आंध्र प्रदेश में कोल इंडिया लिमिटेड के अलावा सिंगरेनी कोलियरीज कंपनी लिमिटेड (भारत सरकार दवारा अधिगृहीत) भी कोयला खदानों की देखभाल करती है।

तिमलनाडु में नेवेली लिग्नाइट निक्षेपों का प्रबंध नेवेली लिग्नाइट कार्पोरेशन (भारत सरकार द्वारा अधिगृहीत संस्था) प्रतिष्ठान करता है। अन्य छोटे कोयला तथा लिग्नाइट निक्षेपों का प्रबंध संबंधित राज्य सरकारें करती हैं।

अब निजी क्षेत्र में केवल दो संगठनों के अधीन कुछ कोककारी कोयला खदानें हैं। इनमें टाटा आयरन एंड स्टील कम्पनी तथा इंडियन आयरन एंड स्टील कंपनी सम्मिलित हैं।

इस समय कोल इंडिया लिमिटेड के अधीन 425 खदानों से कोयला निकाला जा रहा है और राष्ट्रीय कोयला उत्पादन में इसका योगदान प्रायः 90% है।

- 3. कोयले के प्रकार : उत्पत्ति के आधार पर कोयले के दो प्रकार होते हैं—(अ) सैप्रोपेली कोयला और (ब) ह यूमसी कोयला।
- (अ) सैप्रोपेली कोयला: सैप्रोपेली कोयले की उत्पत्ति लकड़ी से नहीं बल्कि बीजाणुओं, तैल शैवालों और पौधों के सड़े गले मलवे से होती है। इसका निक्षेप मूलतः पट्टी-रहित होता हैं। इस कोयले में राल, मोम और चर्बी प्रचुर मात्रा में पाए जाते हैं। इसलिए इसमें हाइड्रोजन या वाष्पशील पदार्थ ह्यूमसी कोयले की तुलना में अधिक होते हैं।

सैप्रोपेली कोयला ह्यूमसी कोयले से अधिक ज्वलनशील होता है। कभी-कभी यह कोयले से इतने अधिक ज्वलनशील होता है कि सीधे दियासलाई से जलाया जा सकता है। सैप्रोपेली कोयला निक्षेप मसूराकार एवं स्थानीय महत्व का होता है और कोयला संस्तर के ऊपर पाया जाता है। सैप्रोपेली कोयला दो प्रकार का होता है, एक बौंगहेड कोयला और दूसरा कैनेल कोयला के नाम से जाना जाता है।

सबसे पहले बौंगहेड कोयला स्काटलैंड की टारबेन पहाड़ी पर पाया गया था, इसिलये इसका दूसरा नाम टारबेनाइट भी हैं। कैनेल शब्द की उत्पित कैंडल (मोमबत्ती) शब्द से हुई है क्योंकि प्राचीनकाल में इंग्लैंड के कुछ क्षेत्रों में गरीब लोग प्रकाश के लिए इस कोयले का उपयोग मोमबत्ती के स्थान पर किया करते थे।

बौंगहेड और कैनेल कोयले के संघटन में केवल शैवाल की मात्रा का अंतर होता है। जब शैवाल की मात्रा 5% तक होती है तो उसे कैनेल कोयला और जब इसकी मात्रा 5% से अधिक होती है तब उसे बौंगहेड कोयला कहा जाता है। आर्थिक और तुलनात्मक दृष्टि से सैप्रोपेली कोयले का महत्व ह्यूमसी कोयले की अपेक्षा कम होता है। भारतवर्ष में अभी तक सैप्रोपेली कोयला नहीं पाया गया है।

(ब) ह्यूमसी कोयला : सैप्रोपेली कोयले के विपरीत ह्यूमसी कोयला पट्टीदार होता है और इसका श्रेणीबद्ध विकास विभिन्न अवस्थाओं में होता है। जैसे—लकड़ी→ पीट→ लिग्नाइट→ विटुमेनी→ कोयला→ ऐन्य्रासाइट। ह्यूमसी कोयले की उत्पत्ति मुख्यतः दलदल अथवा पानी से तर क्षेत्रों में पाए जाने वाले पौधों की लकड़ी एवं छाल के अवशेषों से होती है जो पानी में सड़गल कर पीट बन जाते हैं। और फिर यही पीट वास्तविक कोयले में रूपांतरित हो जाता है। वनस्पतिक पदार्थों का कोयले में परिवर्तन किस सीमा तक हुआ है और उनमें किस प्रकार के भौतिक तथा रासायनिक परिवर्तन हुए हैं इसको आधार मानकर कोयले का वर्गीकरण, पीट, लिग्नाइट, उपविटुमेनी, विटुमेनी, अर्ध-ऐन्य्रासाइट एवं ऐन्य्रासाइट में किया जाता है। ह्यूमसी कोयले की इस शृंखला में पीट से लेकर ऐन्य्रासाइट तक में परिलक्षित होने वाली अनेक श्रेणियाँ पाई जाती हैं। सामान्यतः निश्चित कार्बन एवं कुल कार्बन के प्रतिशत में क्रामिक वृद्धि तथा नमी की मात्रा एवं वाष्पशील घटकों में कमी

निरंतर पाई जाती है। वैसे समान रासायनिक सरचमा वाले कोयलों तथा लगभग समान तापीय मूल्य वाले कोयलों को एक साथ एक ही श्रेणी में वर्गीकृत िकया जाता है। निम्नतम श्रेणी लिग्नाइट की है जो पीट से मिलती जुलती है और उच्चतम कोटि ऐन्थ्रासाइट की है जो लगभग शुद्ध कार्बन के करीब होती है और इसमें 3% हाइड्रोजन तथा 3% ऑक्सीजन की मात्रा हो सकती है।

- (क) पीट: यदयपि कोयले की उत्पत्ति पीट से ही होती है और यह उसकी प्रथम अवस्था है किन्तु इसकी गणना कोयले में नहीं की जाती। नमी वाले क्षेत्र में वनस्पतिक पदार्थी के क्षय से पीट का निर्माण होता है और ये क्षेत्र ऊँचाई वाले प्रदेशों में कम ढलान वाली सतह अथवा नीची भिम की छिछली घाटियाँ हो सकती हैं। पीट एक ठोस रेशेदार पदार्थ होता है और इसमें वनस्पतिक मलवा लगभग असंपिंडित स्थिति में पाया जा सकता है। सामान्यतः इसका रंग हल्का या गहरा भूरा होता है। इसके निकालने और सुखाने में अधिक खर्च पड़ने के कारण पीट आर्थिक दृष्टि से लाभकारी ईंधन नहीं होता, किन्तु इसमें गंधक की कमी होने के कारण इसका छोटा-छोटा गोला बनाकर उपयोग किया जा सकता है। पीट का प्रयोग खाद के रूप में अथवा खाद बनाने वाले पदार्थ के रूप में भी किया जा सकता है क्योंकि इसमें नाइट्रोजन की मात्रा अधिक होती है (कभी-कभी 2% तक)। भारत में वास्तविक पीट केवल 2.000 मीटर की ऊँचाई पर दक्षिण भारत में नीलिगिरि पहाड के दलदली जमाव वाले हिस्से में ही पाया जाता है। ऐसा विश्वास किया जाता है कि बौंग के ये स्रोत बड़े और व्यापक हैं। प्रायः सुखा पीट बहुतायत से बैलगाडियों में भरकर उन्टकमंड ले जाया जाता है जहाँ इसका उपयोग ईंधन के रूप में होता है। कलकत्ता के आस-पास हुगली नदी के दोनों किनारे सतह से प्रायः 6-12 मीटर की गहराई में पीट जैसा पदार्थ पाया जाता है। कश्मीर में भी पीट के पाए जाने का उल्लेख है किंतू इस निक्षेप को संभवतः लिग्नाइट वर्ग में शामिल किया जाता है।
- (ख) लिग्नाइट : लिग्नाइट को भूरा कोयला भी कहते हैं। लिग्नाइट का निकटतम संबंध पीट से है और यह पीट के बाद की उच्चावस्था है। बहुत से लेखकों ने लिग्नाइट और भूरा कोयला शब्दों का एक दूसरे के पर्याय के रूप में उपयोग किया है किन्तु कुछ लेखकों ने लिग्नाइट और भूरे कोयले में अतंर भी दिखाया है और लिग्नाइट को भूरे कोयले से कम परिपक्व माना है। फिर भूरे कोयले को दो वर्गी-नर्म भूरा कोयला एवं कठोर भूरा कोयला में विभाजित किया गया है।

लिग्नाइट एवं भूरे कोयले में वानस्पितक मलबा संपिंडित अवस्था में पाया जा सकता है। यह भूरे रंग का होता है और धूप/हवा में रखने से इसका रंग गहरा हो जाता है। इसकी बनावट लकड़ी की तरह होती है अथवा इसकी संरचना सूक्ष्म रूप से विभाजित पौधों के उन्नतकों से होती है। लिग्नाइट में जब कभी लकड़ी के रेशे दिखलाई पड़ते हैं, वे सड़े गले वानस्पतिक कणों की रवाहीन आधात्रिका में अंतःस्थापित होते हैं। लिग्नाइट अपने संस्तरण के समानांतर ही सामान्यतः विपाटित होता है किन्तु अत्यधिक नमी (25-50%) के कारण हवा में खुला रहने पर यह सूखता है सिकुड़ता है और तब अनियमित ढंग से टूटता है।

- (ग) उपिबटुमेनी कोयला (लिग्नाइटी कोयला या काला लिग्नाइट) : उपिवटुमेनी कोयला रंग में द्युतिहीन काला (लिग्नाइट से अधिक गहरा) होता है और इसकी चमक मोमी होती हैं। यह लिग्नाइट से सधन एवं कठोर होता है। अधिकतर उपिवटुमेनी कोयले विटुमेनी कोयले की तरह पट्टीदार होते हैं इनमें संधियाँ कमजोर होती हैं और संस्तरों के समानान्तर होती हैं। अतः ये कोयले आयताकार टुकड़ों में टूटने की अपेक्षा चौड़ी पट्टियों में टूटते हैं। कुछ ऐसे भी किस्म के उपिवटुमेनी कोयले होते हैं जो लिग्नाइट की तरह खुले में रखने से विघटित हो जाते हैं जिससे इनके परिवहन में किठनाई होती है। उपिवटुमेनी कोयला एक अच्छा ईधन होता है।
- (घ) बिटुमेनी कोयला : बिटुमेनी कोयला सामान्य कोयला है जिसका उपयोग घरों में ईंधन के रूप में किया जाता है। इसमें वास्तविक बिटुमेन नहीं होता किन्तु इसका नाम बिटुमेन इसलिए रखा गया है कि यह बिटुमेन की ही तरह धुआँदार पीली ज्वाला के साथ जलता है और इसके आसवन का एक उत्पाद कोलतार होता है जो कि विटुमेन की प्रकृति का होता है। विटुमेनी कोयला काले रंग का और पट्टीदार होता है। सामान्यतः पट्टियों के बीच में चमकीले कोयले की परतें होती हैं। यह लंबवत् संधियों (जिन्हें क्लीट के नाम से जाना जाता है) की सीध में टूटता है। टूटे हुए टुकड़ों के आकार आयताकार, स्तंभाकार अथवा वर्गाकार होते हैं। कभी-कभी इन टुकड़ों की आकृति शंखाभ भी होती है। द्युतिहीन से अच्छी चमक वाला यह कोयला लिग्नाइट अथवा उपबिटुमेनी कोयले की तुलना में अधिक सघन और अधिक कठोर होता है और खुले में रखने पर ताप एवं हवा को अधिक सह सकता है।
- (य) अंश ऐन्यासाइट: अंश ऐन्यासाइट बिटुमेनी कोयले से अधिक और ऐन्यासाइट से कम कठोर होता है यह ऐन्यासाइट की तुलना में अधिक शीघ्रता से जल उठता है और इसमें से छोटे आकार की पीली ज्वाला निकलती है जो नीले रंग में बदल जाती है।
- (र) ऐन्य्रासाइट : ह्यूमसी कोयले के विभिन्न वर्गों की उत्पत्ति में ऐन्य्रासाइट अंतिम उच्चावस्था का द्योतक है यह गहरे काले रंग का होता है और चाँदी की तरह चमकता है। इसकी अल्पधात्विक द्युति और शंखाभ टुकड़ों में टूटने की प्रवृत्ति इसकी कुछ खास विशेषताओं में से है। पुराने जमाने में यह पत्थर कोयला के नाम से भी जाना जाता था। प्रेट ब्रिटेन के डेबोनशायर एवं पेम्ब्रोकशायर में ऐन्य्रासाइट के छोटे-छोटे टुकड़ों तथा चूरे को कल्म तथा जर्मनी में कुल्म नाम से जाना जाता था।

4. कोयले की उपस्थित की अवस्था: कोयला एक अवसादी शैल है और अवसादी शैलों के संस्तरों के साथ पाया जाता है। सामान्यतः बलुआ पत्थर, शैल और कार्बन युक्त शैल ऐसे प्रमुख शैल हैं जो कोयले के साथ पाए जाते हैं। किसी शैल अनुक्रम में जहाँ कहीं भी कोयले के संस्तर (चित्र 1 अ) होते हैं, इनकी मात्रा सामान्यतः सम्पूर्ण शैलों की तुलना में बहुत कम होती है (चित्र 1 ब)। कभी-कभी कोयले के संस्तर नीचे से ऊपर की ओर अथवा पार्श्व में क्रिमिक रूप से कार्बनयुक्त शैलों में परिवर्तित हुए पाए जाते हैं। साधारणतः संहिनत मृत्तिका से बने शैलों के ऊपरी भाग में कोयला संस्तर पाए जाते हैं। साधारणतः संहिनत मृत्तिका से बने शैलों के ऊपरी भाग में कोयला संस्तर पाए जाते हैं और कोयला संस्तरों के ऊपर बलुआ पत्थर पाए जाते हैं। किंतु ऐसा कोई अकाट्य नियम नहीं है कि हमेशा बलुआ पत्थर कोयला संस्तरें के ऊपर पाए जाते हैं। भारत के कोयला क्षेत्रों में आम तौर पर बलुआ पत्थर ही कोयला संस्तरों के ऊपर पाए जाते हैं। भारत के कोयला क्षेत्रों में आम तौर पर बलुआ पत्थर ही कोयला संस्तरों के ऊपर पाया जाता है।

कोयला निक्षेपों के साथ पाए जाने वाले शैलों के अलावा कहीं-कहीं खनिजों की अवस्थित अथवा अनअवस्थित पट्टियाँ उत्पाद और क्रिस्टल भी होते हैं इन खनिजों में लोहा और गंधक के खनिज बहुत सामान्य हैं।

कोयले के संस्तर साथ में पाए जाने वाले शैलों की भाँति ही क्षैतिज अथवा आनत होते हैं। कोयला संस्तर की मोटाई एक मिलीमीटर से भी कम हो सकती है और सैंकड़ों मीटर भी हो सकती है। मध्य प्रदेश के सिंगरौली कोयला क्षेत्र में एक संस्तर की मोटाई 131.56 मीटर है। डूब नदी के कोयला क्षेत्र में वेधन करते समय भारतीय भू-विज्ञान सर्वेक्षण विभाग ने एक 180 मीटर मोटे संस्तर का पता लगाया है। इसी प्रकार कोयला संस्तर की लंबाई कुछ मीटर से लेकर कई किलोमीटर तक हो सकती है। झारिया कोयला क्षेत्र में कुछ कोयला संस्तर 38 किलोमीटर तक पाए जाते हैं।

5. कोयला संस्तरों में विक्षोभ : शायद ही कोई कोयला संस्तर अपनी पूरी लंबाई या चौड़ाई में बिना किसी विक्षोभ के मिलता है। पृथ्वी के अंदर की अस्थिरता के चलते कभी-कभी कोयला संस्तर मेहराब की तरह झुक जाते हैं जिसे वलन कहा जाता है (चित्र 2 अ) हिमालय क्षेत्र के कोयला संस्तर अधिकांशतः विलत पाए जाते हैं। कभी-कभी भ्रंशन के कारण कोयला संस्तर विच्छिन्न हो जाते हैं (चित्र 2 ब)। ऐसी अवस्था में संस्तर का एक हिस्सा दूसरे से अलग होकर भूमिगत किसी दिशा में खिसक जाता है और फिर उसका पता लगाना मुश्किल हो जाता है। इस प्रकार भ्रंशन के कारण कोयले के खनन में बहुत-सी जटिल समस्याएँ पैदा हो जाती हैं। यह भी उल्लेखनीय है कि कभी-कभी एक कोयला संस्तर दो या दो से अधिक शाखाओं में विभाजित हुआ भी मिलता है (चित्र 3)।

6. कोयला संस्तरों में संरचनाएँ: कोयला संस्तरों में कई प्रकार की संरचनाएँ पाई जाती हैं। आमतौर पर इनमें तीन संधिसमूह होते हैं जिन्हें क्लीट (चित्र 4) कहा जाता है। एक समूह संस्तर-तल के समानांतर होता है और दूसरे दोनों संस्तर तल पर लंबवत् होते हैं और आपस में भी एक दूसरे पर लंबवत् होते हैं। संधियों के ये गुण खनन कार्य के समय कोयला काटने में सहायक होते हैं।

सामान्यतः कोयला संस्तरों में गेंद की तरह के आकार वाले कोयले अंतः स्थापित होते हैं जिन्हें कोयला बॉल, या कोयलां कंदुक कहा जाता है (चित्र 5 अ) । ये कोयले मोटे तौर पर गोलाभ या अंडाकार (चित्र 5 ब) होते हैं और पूर्णतः कोयले के ही बने होते हैं । भारत के रानीगंज और झिरया कोयला क्षेत्र में कोयला बॉल कोल बहुतायत से पाए जाते हैं ।

कभी-कभी कोयला संस्तरों के साथ बिल्कुल कोयला बॉल की ही तरह के आकार-प्रकार का पदार्थ मिलता है। किंतु यह कार्बोनेट (चूने के पत्थर के अवयव) और कोयलीय अवयवों के मिश्रण से बना होता है तथा इसे "कोल बॉल" के नाम से जाना जाता है (चित्र 6 अ)। सामान्यतः "कोल बॉल" में पौधों की संरचनाएँ (चित्र 6 ब) अच्छी तरह सुरक्षित रहती हैं। इससे प्रारंभिक काल में पौधों के विकास को समझने में मदद मिली है। भारतवर्ष में "कोल बॉल" का मिलना दुर्लभ है।

7. ताप से प्रभावित कोयले : कोयला क्षेत्रों में कहीं-कहीं ताप से प्रभावित कोयले (चित्र 7अ) मिलते हैं। साधारणतः जब कई कोयला संस्तर आग्नेय अंतर्बेधनों द्वारा धरती के अंदर से निकलने वाले पिघले शैल पदार्थों के संपर्क में आते हैं तब संस्तर का कोयला तृप्त हो जाता है और यह कोयला "झामा" कहलाता है। झामा की बनावट स्पंजी होती है। अत्यधिक तप्त होने पर कोयला कठोर और संहत हो जाता है तथा उसमें षट्कोणीय सिंधियाँ विकसित हो जाती हैं। (चित्र 7 ब)।

भारतवर्ष में कोयला संस्तरों को प्रभावित करने वाले दो प्रकार के आग्नेय अंतर्वेधी-डॉलराइट और अभ्रक पेरिडोटाइट मिलते हैं। इनमें सबसे अधिक नुकसान कोयला संस्तरों में अभ्रक पेरिडोटाइट से हुआ है जो न केवल संस्तरों को आर-पार बेधे हुए हैं बल्कि इनके बीच की पट्टियों में भी फैले हुए हैं। ताप का सबसे अधिक प्रभाव अंतर्वेधनों से सटे हुए क्षेत्र में होता है और ज्यों-ज्यों दूरी बढ़ती जाती है, यह प्रभाव कम होता जाता है। रानीगंज एवं झरिया के कोयला क्षेत्र आग्नेय अंतर्वेधनों से बुरी तरह प्रभावित हुए हैं।

और भी बहुत से कारण हैं जिनसे कोयला संस्तरों में आग लग जाती है। जैसे—जंगल की आग के कारण अथवा खानों में विस्फोटक गैसों के कारण भयंकर आग लग सकती है और कोयले का बड़ा नुकसान हो सकता है। यदि पर्याप्त सावधानी न बरती जाय तो परित्यक्त खानों में अथवा कोयले के ढेरों में पाई जाने वाली अवशोषित गैसों और आक्सीजन के संयोग से ऊष्माक्षेपी अभिक्रिया हो सकती है और कोयले में आग लग सकती है। चूँकि कोयला ताप का कुचालक होता है अतः कोयले के तप्त होने से निकलने वाली ऊष्मा को वायुमंडल में फैलने में अधिक समय लगता है। इस प्रकार लगातार ऊष्मा एकत्रित होती रहती है और अंततः स्वतः दहन के कारण कोयले में आग लग जाती है जिसके फलस्वरूप कोयला जलकर राख हो जाता है। आग लगने के कारण बहुत से मूल्यवान कोयला संस्तर खासकर झरिया एवं रानीगंज कोयला क्षेत्र में जलकर राख हो गए हैं। भारत में आग से सर्वाधिक प्रभावित केवल झरिया कोयला क्षेत्र में प्रायः 370 लाख टन कोयला समाप्त हो चुका है। अभी भी यहाँ 70 क्षेत्र ऐसे हैं जहाँ आग सिक्रय है जिससे 17.32 वर्ग किलोमीटर क्षेत्र प्रभावित हैं। इस क्षेत्र में प्रायः 450 लाख टन कोयला है जिसे निकालना संभव नहीं लगता है। इस प्रकार कोयले में आग लगने के कारण हम न सिर्फ मूल्यवान कोयला खो रहे हैं बल्कि अन्य अनेक विशिष्ट संपत्तियाँ भी नष्ट हो रही हैं। रेलवे तथा सड़कें प्रभावित हो रही हैं और वातावरण में प्रदूषण फैल रहा है।

8. कोयला संस्तरों में गैस : अनेक प्रकार की गैसें कोयले में अवशोषित या अवरुद्ध पाई जाती हैं। ताजे कोयले में अवरुद्ध गैस का घनत्व प्रति 100 प्राम में 35 से 60 घन सेन्टीमीटर तक होता है। खुली हवा में कोयले को रखने से इसमें अवरुद्ध गैस हवा में मिल जाती है किंतु एक लंबी अविध (5 वर्ष या अधिक) तक खुली हवा में रखने के बावजूद भी कोयले में प्रति 100 प्राम में प्रायः 13 घन सेन्टीमीटर गैस फँसी ही रहती है। इस फँसी हुई गैस की मात्रा कोयले के भौतिक गुणों पर निर्भर करती है, जैसे इसकी कठोरता एवं बनावट आदि। सामान्यतः कोयला जितना घना और कड़ा होता है उसमें अवरुद्ध गैस की मात्रा भी उतनी ही अधिक होती है। यह मात्रा तापमान, दबाव, पाइराइट तथा प्यूजेन आदि की मात्रा पर भी निर्भर करती है। दबाव के कारण कोयले में अधिक गैस अवशोषित होती है।

सामान्यतः कोयले में पाई जाने वाली प्रमुख गैस मीथेन (CH4) और कार्बन डाइऑक्साइड (CO2) की मात्रा में विलोम अनुपात होता है। अर्थात् जब मीथेन की मात्रा अधिक होती है तब कार्बन डाइ ऑक्साइड की मात्रा कम होती है। इसके विपरीत जब कार्बन डाइ ऑक्साइड की मात्रा अधिक होती है तब मीथेन की मात्रा कम होती है। वास्तव में मीथेन के ऑक्सीकरण से कार्बन डाइ-ऑक्साइड बनती है। इसलिए ऑक्सीकरण की प्रगति के साथ-साथ मीथेन की मात्रा घटने लगती है और कार्बन-डाइ-ऑक्साइड की मात्रा बढ़ने लगती है। कोयला संस्तर में पाइराइट की मात्रा अधिक होने पर कार्बन डाइ-ऑक्साइड की मात्रा बढ़ सकती है क्योंकि पाइराइट नम होने पर ऑक्सीजन को अवशोषित करता है और यह ऑक्सीजन हाइड्रोजन के साथ मिलकर पानी तथा कार्बन के साथ मिलकर

कार्बन-डाइ-ऑक्साइड बन जाती है। मीथेन गैस जैव पदार्थों के अपघटन से उत्पन्न होती है और हवा के साथ मिश्रित होने पर मार्श गैस बनाती है। कोयले की खानों के लिये मार्श गैस बहुत ही खतरनाक होती है क्योंकि इसका ज्वलन ताप (लगभग 65°C) कम है और बड़ी आसानी से विस्फोट हो सकता है। विस्फोट से खतरे की गंभीरता मीथेन एवं हवा के अनुपात पर निर्भर करती है।

किसी खान में जब मीथेन का प्रतिशत 5% से 15% तक होता है, तब वह खतरनाक हो जाती है और विस्फोट होने की संभावना रहती है मीथेन एवं कार्बन-डाइ-ऑक्साइड के अतिरिक्त खानों में ईथेन एवं नाइट्रोजन की अल्प मात्रा भी होती है यहाँ तक कि सूक्ष्म मात्रा में हाइड्रोजन भी कोयले में अवरुद्ध पाया जाता है।

खानों के अंदर नशीली गैसों जैसे मीथेन कार्बन मोनोक्साइड अथवा कार्बन डाई आक्साइड की मात्रा का अनुमान डेवी की सुरक्षा बत्ती की ज्योति से लगाया जाता है। खानों में जहरीली गैसों का पता लगाने के लिए कैनैरी (Canary) या मुनियाँ चिड़ियों का भी उपयोग किया जाता है जो नशीली गैसों के प्रति अधिक संवेदनशील होती हैं। यदि ये गैसें निश्चित मात्रा से थोड़ी भी अधिक हो जाती हैं तब इन चिड़ियों की मौत हो जाती है। जब भी किसी संस्तर से समुचित मात्रा में गैस निकलती है तब तुरंत सुरक्षात्मक उपाय किया जाता है और सदैव आवश्यक सावधानियाँ बरती जाती हैं। बॉयलर की राख तथा बेन्टोनाइट अथवा सील करने वाले पदार्थों के मिश्रण का एक लेप संस्तर के ऊपर लगा दिया जाता है और ईंट की एक मीटर मोटी दीवाल से उसे सील कर दिया जाता है। किसी भी खदान में आजकल कार्बनमोनोक्साइड, कार्बनडाइ-ऑक्साइड और मीथेन का नियंत्रण स्वचालित उपकरणों द्वारा लगातार दिन रात किया जाता है। जब भी कोई विषैली गैस सह्यता सीमा को पार करती है तब स्वतः खतरे की घंटी बजने लगती है।

- 9. कोयले का आँखों देखा रूप: कोयले के नमूनों को नंगी आँखों से देखने पर यह स्पष्ट हो जाता है कि कोयला सजातीय पदार्थों का बना हुआ नहीं है (चित्र 8 अ) । इसमें तीन या चार अलग किस्म की पट्टियाँ पाई जाती हैं जिनका वर्गीकरण निम्न प्रकार से किया जाता है—
- (i) विट्रेन : यह एक तेज चमकता हुआ गहरा काला कोयला है जो बनावट में एकरूप होता है। इसकी आभा शीशे की तरह होती है और यह शंखाभ टुकड़ों में टूटता है। यह पट्टीदार विटुमेनी कोयलों में स्पष्ट पट्टियों के रूप में पाया जाता है विट्रेन के सजातीय पदार्थों में पौधों की बनावट प्रायः स्पष्ट नहीं रहती है किन्तु माइक्रोस्कोप से देखने पर इसकी स्लाइड में पौधों की कोशिकाओं का अवशेष कभी-कभी दिखलाई पड़ता है।

- (ii) क्लेरेन क्लेरेन कोयले का एक दूसरा चमकीला अंग है। यह विट्रेन की तरह ही होता है किन्तु उत्पत्ति के समय से ही अति सूक्ष्म धारियों अथवा पट्टियों के रूप में पाया जाता है और प्रकाश बिखेरता रहता है। इसकी आभा रेशम जैसी होती है और यह विट्रेन की तरह शंखाभ टुकड़ों में नहीं टूटता है विट्रेन और क्लेरेन को एक साथ चमकदार कोयले में वर्गीकृत किया जाता है।
- (iii) **डूरिअन**: अपनी गुण विशिष्टता में डूरिअन आभाहीन काले रंग का होता है। विट्रेन की चमकदार या शीशे जैसी सतह से यह पूर्णतः भिन्न होता है।
- (iv) फ्यूजेन : आम तौर पर रेशम जैसी आभा के साथ फ्यूजेन चारकोल (लकड़ी को कोयला) जैसा दिखाई पड़ता है। इसमें लकड़ी की कोशिकाओं की बनावट और नरम रेशम जैसी रेशेदार परत दिखलाई पड़ती है। इस पर प्रायः प्रेफाइट के पाउडर जैसे पदार्थ की अत्यंत सूक्ष्म परत होती है। फ्यूजेन को छूने पर पाउडर उँगिलयों में लग जाता है। साधारणतः फ्यूजेन अनियमित रूप से बिटुमेनी कोयले की चमकीली और द्युतिहीन परतों में पाया जाता है। साधारण कोयले के धूमिल एवं धूल भरे गुणों के लिए यही पदार्थ अधिक जिम्मेदार है क्योंकि यह बहुत चूर्णशील होता है और आसानी से इसका महीन चूर्ण बनाया जा सकता है सामान्यतः फ्यूजेन किसी कोयला संस्तर का एक छोटा संभाग (प्रायः 2-5%) ही होता है।
- 10. सूक्ष्मदर्शी से देखने पर कोयले का रूप: जब किसी कोयले का परीक्षण सूक्ष्मदर्शी द्वारा किया जाता है तब इसकी विषयजातीय प्रकृति अधिक स्पष्ट रूप से उभरकर सामने आती है और यह सुनिश्चित हो जाता है कि कोयले की संरचना भिन्न-भिन्न प्रकार के सूक्ष्म घटकों से हुई है (चित्र 8 ब, स)।

कोयले का परीक्षण आमतौर पर दो प्रकार के शैलकीय सूक्ष्मदर्शियों से किया जाता है:

- (i) संचारित प्रकाश सूक्ष्मदर्शी (Transmitted light microscope) जिसमें कोयले की पारदर्शी स्लाइडों का परीक्षण किया जाता है (चित्र 9अ)।
- (ii) परावर्ती प्रकाश सूक्ष्मदर्शी (Reflected light microsope) जिससे कोयले की पालिश की हुई सतह का अध्ययन किया जाता है। (चित्र 9 ब)।

सूक्ष्मदर्शी के प्रकार पर कोयले की प्रकृति का स्पष्ट होना निर्भर करता है। उदाहरण स्वरूप जब किसी संचारित प्रकाश वाले सूक्ष्मदर्शी से कोयले की पारदर्शी स्लाइड को देखा जाता है तो कोयला लाली लिए हुए भूरे रंग का दिखाई देता है और साथ में कुछ घटक या तो काले या पीले रंग के होते हैं (चित्र 9स.द)।

दूसरी ओर कोयले के पालिश की हुई सतह को परावर्ती प्रकाश वाले सूक्ष्मदर्शी से देखने पर यह अधिकतर धूसर रंग का दिखाई देता है (चित्र 10) और साथ में कुछ घटक या तो गहरे भूरे या चमकदार पीले रंग के दिखाई पड़ते हैं।

सूक्ष्मदर्शी से कोयले के विभिन्न प्रकार के घटक, जिन्हें मैसेरल नाम से जाना जाता है, दिखलाई पड़ते हैं इन घटकों में से अधिकांश पौधों के अवशेष होते हैं। वैज्ञानिकों ने कोयले में पाए जाने वाले पौधों की विभिन्न संरचनाओं की पहचान कर ली है यहाँ तक कि कोयलों में कवक के अवशेषों की उपस्थित आम बात है जो आधुनिक कुकुरमुत्ता के पूर्व रूप हैं। जैविक संघटकों के साथ-साथ अकार्बनिक घटक जैसे—खनिज पदार्थ और शैल भी कोयलों में पाए जाते हैं। खनिजों में क्वार्ज, पाइराइट, कैल्साइट आदि और शैलों में अधिकतर शैल या कार्बनमय शैल सामान्यतः पाए जाते हैं। कोयले के संघटकों का स्वरूप स्कैनिंग इलैक्ट्रान माइक्रोस्कोप में और अधिक स्पष्ट दिखाई पड़ता है क्योंकि इस सूक्ष्मदर्शी में संघटकों का आकार कई गुना आविधित दिखलाई पड़ता है।

कोयले में अकार्बनिक घटक मुख्यतः अवांछित होते हैं। वास्तव में ये कोयले में अपद्रव्य हैं। इनके कारण कोयले का भार बढ़ जाता है और ज्वलनशक्ति कम हो जाती है साथ ही जलने पर खनिज पदार्थ राख में परिवर्तित हो जाते हैं।

- 11. कोयले के भौतिक एवं रासायनिक गुण: ऊर्जा के रूप में कोयले की उपयोगिता का आधार इसकी गुणात्मक विशेषता है। इसके भौतिक और रासायनिक गुणों के आधार पर हम यह निर्धारित करते हैं कि कौन-सा कोयला किस उद्योग के लिए उपयुक्त है। कोयले की कोटि और कीमत का निर्धारण भी इन्हीं गुणों के आधार पर सुनिश्चित किया जाता है।
- (अ) भौतिक गुण: लिग्नाइटी कोयले का रंग हल्के-भूरे से गहरे-भूरे तक होता है जबिक बिटुमेनी कोयले का रंग काले, नीले-काले से गहरा काला तक होता है। इसी प्रकार कोयले की वर्णरेखा (वर्ण रेखा पट्ट पर कोयले के घिसने से बना निशान) का रंग लिग्नाइट में हल्के भूरे से भूरे रंग का और बिटुमेनी कोयले में गहरे भूरे से भूरे काले रंग का होता है। ऐन्श्रासाइटी कोयले की वर्ण रेखा काली होती है। सामान्यतः कोयले में कार्बन की मात्रा जितनी अधिक होगी, उसकी वर्ण रेखा उतनी ही अधिक काली होगी। कोयले की द्युति धात्विक चमकीली, गहरी काली या रक्त की तरह या द्युतिहीन हो सकती है। कोयले का आपेक्षिक घनत्व इसके प्रकार एवं राख के अनुपात पर निर्भर करता है। कोककारी कोयले के आपेक्षिक घनत्व के लिए इस सूत्र का उपयोग किया जा सकता है—

आभासी आपेक्षिक घनत्व (g) = 1.27 + a (प्रति मात्रक राख की मात्रा) (आर्द्रता संतृप्त कोयले की)

व्हाइटेकर के अनुसार यह सूत्र उन्हीं कोयलों के लिए उपयुक्त है जिनमें 40% राख होती है सबसे अधिक आपेक्षिक घनत्व (प्रायः 1.5) ऐन्श्रासाइट का होता है जबिक लिग्नाइट का निम्नतम (प्रायः 1.2) होता है। बिटुमेनी कोयलों का आपेक्षिक घनत्व इन दोनों के बीच में होता है। कठोर बिटुमेनी एवं ऐन्श्रासाइट कोयले की कठोरता 2.5 से 3 तक होती है। साधारण बिटुमेनी कोयले की औसत कठोरता 2 होती है और कुछ लिग्नाइट तो सड़ी हुई लकड़ी की तरह नरम होता है। अधिकांश कोयले भंगुर एवं चूर्णशील होते हैं। कोयले का विभंग शंखाभ से लेकर असमतल तक हो सकता है। आमतौर पर विट्रेन और ऐन्श्रासाइट का विभंग शंखाभ होता है।

सारणी 1.
लकड़ी से ऐन्थ्रासाइट में रूपांतरण के बीच रासायनिक संघटन में परिवर्तन
(प्रतिशत में)

	कार्बन	हाइड्रोजन	ऑक्सीजन	नाइट्रोजन
लकड़ी	50.0	6.0	43.0	1.0
पीट	57.0	6.0	35.3	1.7
लिग्नाइट	65.0	5.2	28.3	1.5
विदुमेनी कोयला	84.0	5.2	9.3	1.5
ऐन्थ्रासाइट	93.5	2.8	2.8	0.9

व्हाइटेकर के अनुसार यह सूत्र उन्हीं कोयलों के लिए उपयुक्त है जिनमें 40% राख होती है सबसे अधिक आपेक्षिक घनत्व (प्रायः 1.5) ऐन्थ्रासाइट का होता है जबिक लिग्नाइट का निम्नतम (प्रायः 1.2) होता है। बिटुमेनी कोयलों का आपेक्षिक घनत्व इन दोनों के बीच में होता है। कठोर बिटुमेनी एवं ऐन्थ्रासाइट कोयले की कठोरता 2.5 से 3 तक होती है। साधारण बिटुमेनी कोयले की औसत कठोरता 2 होती है और कुछ लिग्नाइट तो सड़ी हुई लकड़ी की तरह नरम होता है। अधिकांश कोयले भंगुर एवं चूर्णशील होते हैं। कोयले का विभंग शंखाभ से लेकर असमतल तक हो सकता है। आमतौर पर विट्रेन और ऐन्थ्रासाइट का विभंग शंखाभ होता है।

अधिकांश स्तरित कोयलों में विदलन होता है जिसे क्लीट नाम से जाना जाता है कोयले में विदलन के साथ-साथ शीर्ष संधि को भी सम्मिलित किया जाता है जिसके कारण स्तरित कोयले निश्चित दिशा में लगभग समतल सतह के साथ टूटते हैं। आमृतौर पर विदलन के दो समुच्चय एक दूसरे पर समकोण बनाते हैं और कोयला स्तर पर भी लंबवत् होते हैं तथा एक समुच्चय स्तर के समांतर होता है। वैसे विदलन तल एक दूसरे के निकट अथवा दूर हो सकते हैं। पहली स्थिति में कोयला छोटे-छोटे टुकड़ों में टूटता है अथवा लाने ले जाने में छोटे टुकड़ों में विभक्त हो जाता है जबिक दूसरी स्थिति में कोयले के बड़े-बड़े टुकड़ें निकलते हैं।

(ब) रासायनिक गुण: रासायनिक दृष्टि से कोयला जटिल जैविक यौगिकों, थोड़ी सी नमी और अकार्बनिक पदार्थों तथा खिनजों का मिश्रण है। कार्बन, हाइड्रोजन एवं आक्सीजन इसके मुख्य घटक हैं। इसमें नाइट्रोजन तथा गंधक अल्प मात्रा में मिलते हैं। एक इसके प्रगित मूलक क्रमिक विकास की एक धारा पीट, लिंग्नाइट एवं कोयले से जंगल के वानस्पतिक मलबे का संबंध जोड़ती है जिसका आरंभ लकड़ी से होकर अंत ऐन्थ्रासाइट के रूप में होता है। इस प्रक्रिया में कार्बन की क्रमिक वृद्धि और ऑक्सीजन तथा हाइड्रोजन का हास पाया जाता है। (सारणी 1)।

कोयले में मुक्त कार्बन की मात्रा अनिश्चित होती है। संभवतः निम्नकोटि के ईंधन (जैसे-लिग्नाइट) में यह नहीं मिलता है किन्तु उच्चकोटि के कोयले जैसे- ऐन्य्रासाइट में यह पाया जा सकता है। वास्तव में कायान्तरित शैलों के साथ पाए जाने वाले प्रेफाइटी कोयले में मुक्त कार्बन अत्यधिक मात्रा में मिलता है। जब कोयले को वायु संपर्क से अलग प्रायः 900 सेन्टीग्रेड पर तप्त किया जाता है तब इसके अपघटन से वाष्पशील पदार्थ और तरल उत्पाद छनकर बाहर आ जाते हैं और अवशेष के रूप में राख बच जाती है। जब इस राख को भी अंत में खुली हवा में गर्म किया जाता है तब इसमें बचे हए कुछ और संघटक निकल जाते हैं और अंत में केवल राख ही रह जाती है। कोयले की तत्वात्मक संरचना और निकटतम विश्लेषण के अध्ययन से यह स्पष्ट होता है कि जब संपूर्ण कार्बन की मात्रा कम होती है तब ऑक्सीजन की मात्रा अधिक होती है और वाष्पशील घटक अधिकतम होते हैं जैसािक लिग्नाइट और उपबिद्मेनी कोयलों में होता है। इसके विपरीत ऐन्यासाइटों कोयलों में जहाँ कुल कार्बन अधिक एवं आक्सीजन की कमी होती है, वाष्पशील पदार्थ कम होते हैं। इस प्रकार निश्चित कार्बन और वाष्पशील पदार्थ का अनुपात अथवा ईंधन अनुपात एक उपयोगी सूचकांक होता है जिसके आधार पर किसी भी प्रकार के कोयले के गुणों का पता लग जाता है। लिग्नाइट एवं उपबिट्मेनी कोयले का ईंधन अनुपात 2:3 से 3:2 तक होता है जबिक 3:2 से 4:1 या अधिक ईंधन अनुपात वास्तविक बिद्रमेनी कोयले में होता है।

जब कोयला पूर्ण रूप से जल जाता है तब अकार्बनिक पदार्थों का अवशेष राख अर्थात् रह जाती है जिसमें मूल वनस्पतियों के अकार्बनिक घटक, मृत्तिका खनिज पदार्थ और महीन खंडमय अवसाद होते हैं। ये पदार्थ क्षयी वनस्पतियों के साथ बहकर आए थे और आज पतले धूल-स्तर के रूप में कोयला संस्तरों के बीच में अथवा कोयले में बिल्कुल ही समाहित पाए जाते हैं। पाइराइट, कार्बोनेट और खिनजों की ग्रंथिकाएँ और टुकड़े, जो कभी-कभी कोयलों में पाए जाते हैं, अंशतः राख में भी मिलते हैं विरले ही कोयलों की राख 1 या 2 प्रतिशत होती है। आमतौर पर यह 5 प्रतिशत तक होती है जैसा कि असम के कोयलों में है किंतु गोंडवाना कोयले (भारतवर्ष का प्रमुख कोयला स्रोत) में राख की मात्रा प्रायः 20 प्रतिशत से अधिक होती है। भिन्न-भिन्न कोयलों में राख की मात्रा अलग-अलग होती है। यहाँ तक कि एक ही कोटि के कोयले में राख की मात्रा भिन्न हो सकती है। कोयले के अन्य घटकों से राख का कोई संबंध नहीं होता। व्यावहारिक रूप में यह निष्क्रिय पदार्थ है और इसकी अधिकता कोयले के मूल्य एवं गुणवत्ता को गंभीर रूप से प्रभावित करती है तथा उसी अनुपात में गिरावट लाती है। इसके साथ-साथ राख के संघटक भी कोयले की कीमत और विशिष्टता को सुनिश्चित करने में महत्वपूर्ण है। राख में ऐलुमीनियम सिलिकेट की मात्रा अधिक होने पर यह अधिक अगलनीय होती है और इसके स्थान पर यदि चूना, मैग्नीशिया और लौह आक्साइड पदार्थ अधिक होते हैं तब इसकी अगलनीयता कम हो जाती है। कम राख और आसानी से गलने वाली राख वाले कोयले की तुलना में अधिक राख और अगलनीय राख वाले कोयले की नुलना में अधिक राख और

कोयले में नमी दो प्रकार की होती है—मुक्त नमी एवं आर्द्रताग्राही नमी। कोयला जब हवा में सुखाए जाने पर हवा की नमी को ग्रहण कर लेता है तब उसे आर्द्रताग्राही नमी कहते हैं। चूँकि हवा में रखे हुए कोयले में यह नमी कभी-कभी रह जाती है इसलिए इस नमी को "जन्मजात" नमी भी कहा जाता है। मोटे तौर पर इसे कोयले की कोटि का मापक भी कहा जा सकता है क्योंकि उच्चकोटि के कोयले में जन्मजात नमी का बहुत ही कम प्रतिशत होता है और निम्नकोटि के कोयले में यह नमी अधिक मात्रा में पाई जाती है। लिग्नाइट एवं भूरा कोयला जब खदान से ताजा निकाला जाता है तब उसमें नमी 30 से 45 प्रतिशत तक होती है किन्तु खुले स्थान पर रखने से हवा में सूखने पर इसमें 15 से 20 प्रतिशत तक नमी रह जाती है। बिटुमेनी कोयले को हवा में सुखाए जाने पर उसमें 1 से 12 प्रतिशत तक नमी रह जाती है। बॉयलर में जलने अथवा कोक बनाने में मुक्त नमी की एक विशेष मात्रा (प्रायः 5%) सुविधाजनक होती है। अधिक नमी वाले कोयले नमी की कमी होने पर और सूखी हवा में अधिक दिनों तक रहने पर छोटे-छोटे टुकड़ों में टूट जाते हैं। ऐसा इन कोयलों को एक स्थान से दूसरे स्थान पर लाने-ले जाने की प्रक्रिया में भी होता है।

कोयले में गंधक तीन प्रकार में पाया जाता है—खनिज सल्फाइड (पाइराइट एवं मार्केसाइट), कार्बनिक गंधक यौगिक और सल्फेट (प्रायः कैल्सियम और लौह सल्फेट)। कभी-कभी तात्विक गंधक भी मिलता है जैसे कुछ भूरे कोयलों में। विभिन्न कोयलों में गंधक

की मात्रा 0.5 से 10 प्रतिशत तक पाई जाती है। जब कोयले में पाइराइट या मार्केसाइट के सूक्ष्म कण विकीर्णित रहते हैं तब इनका तेजी से ऑक्सीकरण होता है, कोयला टूटने लगता है और उसमें स्वतः दहन की प्रक्रिया आरंभ हो सकती है। सल्फाइड की प्रंथिकाओं या बड़े दुकड़ों का इतनी तेजी से ऑक्सीकरण नहीं होता और उन्हें आसानी से चुनकर अलग किया जा सकता है। कोयले में गंधक एक आपत्तिजनक अशुद्धता है खासकर उन कोयलों में जिनका उपयोग धातुकर्मीय प्रक्रिया में किया जाता है।

अधिकांश कोयलों में फॉस्फोरस की अल्पमात्रा पाई जाती है। जब कोयले को जलाया जाता है तब यह तत्व राख में बचा रह जाता है। सामान्यतः कोयले की राख में फॉस्फोरस की उपस्थित का कोई महत्व नहीं है। कोयले में फॉस्फोरस की मात्रा उस समय महत्वपूर्ण हो जाती है जब धातुकर्मीय उपयोग के लिए कोयले से कोक बनाया जाता है और वह भी विशेष रूप से कच्चे लोहे के उत्पादन के लिए। इस कोक में फॉस्फोरस की मात्रा 0.02% से अधिक नहीं होनी चाहिए। दामोदर घाटी और गिरिडीह कोयला क्षेत्र के कोयलों में फॉस्फोरस दो प्रकार से पाया जाता है: एक मूल घटक के रूप में संभवतः मूल वानस्पतिक पदार्थों में कार्बनिक अवयवों के साथ और दूसरा गौण रूप में अकार्बनिक कैल्सियम फॉस्फेट के रूप में जो अत्यधिक फॉस्फोरस का अधिकांश भाग ऐपाटाइट के रूप में होता है।

- 12. कोककारी कोयला : जब कोयले का भंजक आसवन किया जाता है तब विभिन्न प्रकार के वाष्मशील घटक लाल ताप पर बाहर निकल आते हैं। इस प्रक्रिया के बीच में कुछ कोयलों का आंशिक गलन होकर केक बन जाता है और इसके ठोस होने के साथ ही इसमें कमोवेश कोशिका संरचना बन जाती है जिसका कारण इसमें प्रयुक्त प्रक्रिया है। अन्य दूसरे कोयलों का गलन नहीं होता और उनका अवशेष अधिकांशतः परिवर्तित न होकर अपने मौलिक आकार-प्रकार में ही रह जाता है। व्यवहार में कोक शब्द से कोक-चूल्हे में कोयले के तप्त करने से प्राप्त संज्वालाश्मी उत्पाद ही समझा जाता है, और जब संज्वालाश्मी उत्पाद नहीं प्राप्त होता है तब उस कोयले को अकोककर कहा जाता है। कुछ कोयलों से स्पंज की तरह के संज्वालाश्मी उत्पाद बनते हैं, अर्थात् कोक बनाते समय मूल कोयले के आयतन में वृद्धि होकर कोक प्राप्त होता है। झोंका-भट्टी में उपयोग के लिये उपयुक्त कोक में दो गुण आवश्यक हैं—
- (i) कोक स्पंजी हो ताकि गलित लौह-अयस्क के साथ आसानी से झोंका-भट्टी में अभिक्रिया कर सके, और

(ii) कोक को कठोर होना चाहिए तथा इसमें लाने-ले जाने के दौरान पड़ने वाले दबाव को सहने की समुचित शक्ति होनी चाहिए।

यदि कोक मुलायम होगा तो यह छोटे-छोटे टुकड़ों में टूट जायेगा और झोंका-भट्टी में तैरने लगेगा जिससे कोक को भट्टी के तल में गिलत लौह-अयस्क से अभिक्रिया करने का अवसर नहीं मिलेगा। कुछ कोयले भट्टी में तप्त होने पर अत्यधिक फूल जाते हैं। ऐसा संभवतः इन कोयलों में पाई जाने वाली विट्रेन पट्टियों में अधिक बुदबुदाहट के कारण होता है। इन कोयलों से छिद्रमय अपेक्षाकृत कमजोर कोक बनता है। ऐसे कोयले को जब अन्य कोक बनाने वाले कोयले में मिलाकर तप्त किया जाता है तब इस मिश्रण से कठोर कोक बन सकता है। जिन कोयलों में वापष्शील तत्व 17% से कम अथवा 40% से अधिक होते हैं वे मुश्किल से अच्छे कोककारी कोयले होते हैं। व्यावहारिक रूप में सभी कोयले जिनमें हाइड्रोजन और ऑक्सीजन का अनुपात 58 से ज्यादा होता है, अच्छे कोककारी कोयले होते हैं। कोककारी कोयलों का चूर्ण जब खरल में घिसा जाता है तब वह खरल के किनारों से चिपक जाता है। यदि सूक्ष्म रूप से पिसे हुए कोयले को अचानक अधिक तापमान पर तप्त किया जाए तो कोक की दृढ़ता बढ़ सकती है। कोक-भट्टी में कोयले के चूर्ण को बिंखरी हालत में नहीं बल्कि संपीडित अवस्था में प्रयोगकर बढ़िया किस्म का कोक प्राप्त किया जा सकता है।

13. तापन मूल्य : कोयले के तापन मूल्य को ब्रिटिश ऊष्मा मात्रा (B.T.U.) प्रति पाउंड अथवा प्रतिप्राम कैलोरी या अंतर्राष्ट्रीय मानक के अनुसार किलो जूल में व्यक्त किया जाता है। कोयले का तापन मूल्य अथवा कैलोरीमान कोयले की इकाई वजन के दहन से निकली ताप इकाई के रूप में व्यक्त किया जाता है और यह मान लिया जाता है कि दहन की प्रक्रिया वायुमंडलीय ताप तथा दाब पर हुई है। कोयले का कैलोरीमान कैलोरीमीटर से सुनिश्चित किया जाता है। तात्विक अथवा निकटस्थ विश्लेषण द्वारा भी लगभग कैलोरीमान की गणना की जा सकती है।

आमतौर पर कार्बन की मात्रा में वृद्धि से कोयले का तापन मूल्य भी उसी अनुपात में बढ़ता जाता है। उच्च वाष्पशील कोयले लंबी ज्वाला के साथ जलते हैं और निम्न वाष्पशील कोयलें (छोटी ज्वाला के साथ जलने वाले) की अपेक्षा कम ताप देते हैं।

14. कोयले की उत्पत्ति कोयले का सूक्ष्मदर्शी द्वारा अध्ययन करने पर उसमें विभिन्न वानस्पतिक संरचनाओं की उपस्थिति स्पष्ट रूप से दिखलाई पड़ती है जिससे यह निःसंदेह प्रमाणित होता है कि कोयले की उत्पत्ति वानस्पतिक अवशेषों से होती है। वास्तव में मूल वानस्पतिक पदार्थों के सड़ने गलने के साथ जो रासायनिक अपघटन तथा भौतिक परिवर्तन होता है उसकी अवस्था के अनुसार विभिन्न प्रकार के कोयलों का निर्माण होता है। मूल कार्बनिक मलवे से कोयले की संरचना की विभिन्न अवस्थाओं को निम्न प्रकार से दिखाया जा सकता है—

सारणी 2

कोयले का निर्माण

(अ) मूल पदार्थ

1

लिग्नो सेलुलोस, वानस्पतिक प्रोटीन, रेजिन, चर्बी एवं मोम

(ब) परिवर्तन की प्रथम अवस्था

किण्वन, पीट, पानी और संभवतः पृथक्करण पानी द्वारा परिवहन और बौग का बनना, द्वारा गलने के फलस्वरूप अन्य स्थान पर CH4, CO2, H2O कोलायडीय जैल और अविलेय पुनर्निक्षेष्ण (कभी-कभी) का निकलना पदार्थ का बनना

(स) परिवर्तन की द्वितीय अवस्था

नए स्तर के अंदर ढका (आवरणित) होना, संपिंडित पृथ्वी हलचल द्वारा स्तरित होना और दबाब के कारण पानी का निकलना। संरचना का निर्माण होना

(द) परिवर्तन की तीसरी अवस्था (बिटुमेनीकरण अवस्था)

ļ

दाब के प्रभाव से एवं धीरे-धीरे बढ़ते हुए ताप के कारण-

- (क) निरंतर पानी का निकलना।
- (ख) आंतरिक संघनन द्वारा CO2, H2O एवं CH4 का निकलना।
- (ग) अम्लीय एवं क्षारीय ह्यूमसी पदार्थों का मिश्रण।
- (घ) फोनोलाइटी पिंडों द्वारा कोककारी संघटकों का विकास।
- (न) परिवर्तन की चौथी अवस्था (ऐन्थ्रासाइटी अवस्था) प्रचंड भूकंपों द्वारा उत्पन्न दाब एवं ताप के प्रभाव से बिटुमेनी पदार्थों का ऐन्थ्रासाइटीकरण।
- (i) वनस्पतिक पदार्थों का संचयन : वानस्पतिक पदार्थों के संचयन के विषय में दो सिद्धांत है: पहला 'स्वस्थाने सिद्धांत' एवं दूसरा 'विस्थापन सिद्धांत'।

(क) स्वस्थाने सिद्धांत : ऐसी धारणा है कि पुराने जंगल और कच्छ धरती की सतह में उथल-पुथल के कारण अवसादों के नीचे दब गए फिर समय के अंतराल में अधिभार के दाब तथा ताप के कारण इनका रूपांतरण कोयले के उप में हो गया। कोयला संस्तरों में पाए गए जड़ सहित खड़े वृक्षों (चित्र 12) के तनों के स्पष्ट जीवाश्म उस समय के जंगलों में इनकी मूल स्थिति में पाए जाने एवं विकसित होने का संकेत देते हैं और इस प्रकार इस सिद्धांत की पुष्टि होती है।

कोयला संस्तर के नीचे अग्निसह मृत्तिका पाई ाती है। सामान्य मिट्टी में पाए जाने वाले घटक जैसे क्षार, चूना एवं लौह ऑक्साइड अभिवाह की तरह कार्य करते हैं और उनपर उगने वाले पौधों द्वारा अवशोषित कर लिए जाते हैं। कोयला संस्तर के नीचे अग्निसह मृत्तिका पट्टी का पाया जाना स्वस्थाने सिद्धांत के साक्ष्य देकर पुष्ट करता है कि कभी इस पर जंगल थे।

स्वस्थाने एकत्रित वनस्पित पदार्थों द्वारा निर्मित कोयला संस्तर विस्तृत क्षेत्र में फैले होने पर भी बनावट में निश्चित रूप से लगभग एक जैसे होते हैं और इनमें राख का प्रतिशत भी कम होता है। साथ-ही इस कोयले में अपरदी पदार्थ जैसे बालू या मिट्टी का प्रायः अभाव रहता है। किसी भी प्रकार के जलीय जीवाश्म की अनुपस्थित भी इस सिद्धांत के पक्ष में एक और प्रमाण है।

(ख) विस्थापन सिद्धांत : इस सिद्धांत के अनुसार बाहित वानस्पितक पदार्थ गहरी झील ज्वारनद मुख तथा नदी-घाटी में जमा हो जाते हैं और बाद में बालू मिट्टी जैसे अवसादों से ढक जाते हैं। यही वानस्पितक पदार्थ कालांतर में कोयले में परिवर्तित हो जाते हैं।

विस्थापन सिद्धांत के समर्थक स्वस्थाने सिद्धांत की त्रुटियों की ओर संकेत करते हुए अपने दृष्टिकोण को इस प्रकार स्पष्ट करते हैं।

- (i) अग्निसह मृत्तिका प्रायः कोयला सस्तर के नीचे नहीं होती बल्कि कोयला संस्तर सीधे बालुकाश्म, संगुटिकाश्म अथवा शेल पर टिका होता है और वृक्षों का खड़ा तना भी नहीं मिलता।
- (ii) चूँिक मूल पदार्थ प्राकृतिक वाहकों द्वारा लाकर एकत्रित किया हुआ होता है इसिलए इन कोयला संस्तरों की बनावट में व्यापक भिन्नता होती है, विशेष रूप से मलबा पदार्थों जैसे बालू या मिट्टी की अपेक्षाकृत अधिक मात्रा होती है। इस प्रकार इन कोयलों में राख की मात्रा भी स्वस्थाने उत्पन्न कोयलों की तुलना में बहुत अधिक होती है।
- (iii) मोटे कोयला संस्तरों के निर्माण का कारण वानस्पतिक मलबे का अवतलनीय द्रोणी में क्रमशः इकट्ठा होना है। आमतौर पर 3 मीटर मोटे वानस्पतिक मलबे से 30 सेन्टीमीटर मोटे कोयला-संस्तर का निर्माण होता है।

(iv) वर्तमान काल में विस्थापन सिद्धांत के प्रमाण कुछ ज्वारनद मुखों में पाए जा सकते हैं, जैसे मिस्सीसिपी का डेल्टा।

अब तक यह माना जाता था कि भारतीय कोयले की उत्पत्ति विस्थापन सिद्धांत के आधार पर हुई है क्योंकि इसमें जड़ सहित सीधे तने का कोई प्रमाण नहीं मिलता था। किंतु इधर हाल में कोयला संस्तरों के फर्श में छोटी-छोटी जड़ें देखी गई हैं, साथ-ही कोयला संस्तरों एवं इसके साथ पाए जाने वाले संस्तरों में समुद्री प्रभाव के प्रमाण भी पाए गए हैं। इस प्रकार अब यह अनुमान लगाया जाता है कि भारतीय कोयले में वानस्पतिक पदार्थों का संचयन दोनों सिद्धांतों (स्वस्थाने-एवं विस्थापन) के सिम्मिलित आधार पर हुआ है।

कोयले के संस्तर की उत्पत्ति के लिए हम कल्पना करें कि समुद्र तट के विशाल क्षेत्र में जहाँ इस हद तक रेत और मिट्टी का अवरोध हो कि बालुका तट समुद्र जल के तीव्र प्रवाह को रोक लेता है और यहाँ से मीठे जल को बहकर बाहर निकल जाने से भी रोक लेता है जिससे कि खारे जल का एक ज्वारनदमुखी क्षेत्र बन जाता है इस क्षेत्र में जलरागी पौधे उगते हैं, बढ़ते हैं और अंततः सूखकर तल-मृदा का निर्माण करते हैं। इस तल-मृदा पर बड़े-बड़े वृक्ष एवं अन्यान्य पौधे बहुतायत से दलदल की स्थिति होने के कारण उगते हैं, बढ़ते हैं और कालान्तर में घने जंगलों का रूप ले लेते हैं। एक लंबी अविध के दौरान दलदल के फर्श पर गिरे हुए वृक्षों और पौधों के अवशेषों की एक तह सी बिछ जाती है जो अंततः अपघटित होकर पीट में परिवर्तित हो जाती है। इस पीट में महीन पत्तियों वाले पौधों जैसे फर्न, आरोही लताओं एवं झाड़ झंखाड़ की सघन उपज होती है और जैसे-जैसे ये पौधे मरते और मुरझाते रहते हैं दूसरे नये पौधे उत्पन्न होते रहते हैं और इस प्रकार कालांतर में पीट निश्चेप की मोटाई भी बढ़ती रहती है।

निदयाँ जंगलों के बीच से बहती रही है और दलदल का पानी इन निदयों द्वारा बहाकर लाए गए अवसादों से दूषित होता रहा है। ये अवसाद कोयला-पदार्थों के ढेर में बैठते रहे और भली-भाँति मिश्रित हो गए। निदयों द्वारा लाए गए अवसादों में वानस्पतिक पदार्थ, मिट्टी एवं अन्य खनिज कण होते हैं। इस प्रकार कोयलों की शुद्धता जलवायु, प्रकृति एवं निदयों द्वारा लाए गए अवसादों की मात्रा पर निर्भर करती है। वानस्पतिक पदार्थों की मात्रा और मिट्टी पर या खनिज पदार्थों का अनुपात भी एक महत्वपूर्ण भूमिका अदा करता है। यदि वानस्पतिक पदार्थों की मात्रा मिट्टी या अन्य खनिज पदार्थों की मात्रा से अधिक होती है तो कम राख वाले उत्कृष्ट कोयले की आशा की जाती है। भारतीय कोयलों की उत्पत्ति की अवधि में सूखे एवं बरसाती मौसम बारी-बारी से बदलते रहते हैं। वर्षा काल में निदयों द्वारा बड़ी मात्रा में वानस्पतिक पदार्थ एवं अवसाद बहाकर लाए गए जो स्वस्थाने उगे हुए एवं एकत्रित हुए वानस्पतिक पदार्थों से मिश्रित हो गए। इस मिश्रित वानस्पतिक अवशेष पर

पौधों की अनेक पीढ़ियाँ जमीं और मर गईं और इस प्रकार पीट संस्तर की मोटाई बढ़ती गई। बंगाल की खाड़ी के सुंदरबन क्षेत्र में कोई भी देख सकता है कि किस प्रकार निदयों द्वारा लाए गए वानस्पितक पदार्थ विभिन्न वाहिकाओं में और उनके भरने पर दलदल वाले जंगलों की जमीन पर ढेरों में जमा रहते हैं। इस प्रकार के मिश्रित (स्वस्थाने एवं विस्थापित) ढेरों को तकनीकी संदर्भ में "उपस्वस्थानिक" उत्पत्ति का कहा जाता है। सुंदरबन के पीट संस्तर कलकत्ता पीट के नाम से जाने जाते हैं और उनके संघटक मुख्य रूप से स्वस्थान में पैदा होने वाले सुंदरी वृक्षों के अवशेष होते हैं। इनके अतिरिक्त मांस-जातीय वानस्पित , सर्द्र, सरू और घास की तरह के पौधों, बीजों, अंजीर के पत्तों आदि के अवशेष भी पाए जाते हैं। साथ ही अन्य अनेक बीज और विशेष रूप से मखाना भी मिलते हैं जो सुदूर बांगलादेश के ढाका क्षेत्र से बहकर आते हैं।

- (ii) वानस्पतिक पदार्थों का कोयले में रूपांतरण : वानस्पतिक मलबे का कोयले में रूपांतरण बहुत ही जटिल प्रक्रिया है और पूर्ण रूप से ज्ञात नहीं है। जिन दो सुनिश्चित अवस्थाओं में यह रूपांतरण होता है उनमें से एक जीव-रासायिनक और दूसरी भू-रासायिनक अवस्था है:
- (I) जीव-रासायिनक अवस्था : प्रारंभिक जीव-रासायिनक संस्तर 131.56 मीटर है। इस प्रकार के अत्यधिक मोटे संस्तरों की रचना तभी होती है जब वानस्पतिक पदार्थों का संचयन किसी द्रोणी में होता है और संचियत पदार्थ अपने भार से धीरे-धीरे अवतिलत होता रहता है। एक मीटर मोटे कोयला संस्तर के निर्माण के लिए प्रायः 10 मीटर मोटे वानस्पतिक पदार्थों के संचयन की आवश्यकता होती है। अतः 131.56 मीटर मोटे संस्तर के लिए वानस्पतिक पदार्थों का प्रायः 131.5 मीटर मोटा संचयन हुआ होगा।
- (II) भू-रासायनिक अवस्था : इस अवस्था में भूमि का अवतलन होना चाहिए । संचियत वानस्पतिक पदार्थ निदयों की मिट्टी तथा बालू से ढके जाते हैं अथवा अवतलन ज्वार तथा अन्य कारणों से समुद्री पानी बहकर आता है और अंततः समुद्री पट्टी बन जाती है । परवर्ती काल में यही संचियत वानस्पतिक पदार्थ दाब और ताप के कारण कोयले में रूपान्तरित हो जाते हैं । ताप एवं दाब हवा नियंत्रित होते हुए वानस्पतिक पदार्थों का कोयले में रूपान्तरण विभिन्न अवस्थाओं में सिलसिलेवार होता है—

(लकड़ी) →(पीट) →(लिग्नाइट) → (बिटुमेनी कोयला) →(ऐन्श्रासाइट)

अधिभार का दबाब और ताप का उतार-चढ़ाव वानस्पतिक पदार्थों को कोयले में रूपांतरित करने के लिए पर्याप्त हो सकता है। यह इस तथ्य से स्पष्ट है कि गहराई के साथ कोयला संस्तरों की परिपक्वता भी बढ़ती जाती है। सामान्यतः विवर्तनिक उथल-पुथल दाब

एवं ताप पैदा करते हैं और इस प्रकार कोयला निर्माण की प्रक्रिया भी तेज हो जाती है। उदाहरणस्वरूप कलकत्ता महानगर के उपधरातल में अनेक पीट तल पाए गए हैं। यह इस तथ्य के प्रमाण हैं कि संचियत वानस्पतिक पदार्थ प्रचुर दाब एवं ताप के प्रभाव से वंचित रह गए जिसके कारण वे पीट अवस्था के बाद की परिपक्वता प्राप्त नहीं कर सके। इसके विपरीत जम्मू के कोयला क्षेत्र के कोयलों में अधिकतम परिपक्वता पाई जाती है और अर्ध ऐन्थ्रासाइट किस्म तक के कोयले मिलते हैं। यह इस कारण संभव हो सका कि हिमालय उत्पत्ति की अविध में अवसादों से ढक जाने के बाद वानस्पतिक पदार्थों पर भारी दबाब तथा सहवर्ती ताप का प्रभाव पड़ा।

कोयले की उत्पत्ति में समय का भी महत्वपूर्ण योगदान होता है। ऐसा अनुमान किया जाता है कि वानस्पतिक पदार्थों के संचयन से लेकर कोयले के निर्माण में कम से कम दस लाख वर्ष लग जाते हैं। ताप एवं दाब के प्रभाव से बने कोयलों को क्षेत्रीय कायांतरित कोयला कहा जाता है। केवल ऊष्पा भी वानस्पतिक पदार्थों को कोयले जैसे पदार्थ में रूपांतरित कर सकती है। ऐसा प्रकृति में भी होता है। आग्नेय अंतर्वेधनों द्वारा प्राप्त ऊष्पा के प्रभाव के कारण लकड़ी पीट या लिग्नाइट का रूपांतरण बिटुमेनी कोयला या अर्ध ऐन्थ्रासाइट या ऐन्थ्रासाइट के लगभग समकक्ष हो सकता है। उदाहरण के लिए लकड़ी को जलाने से चारकोल मिलता है जिसकी बनावट बिटुमेनी कोयले जैसी हो सकती है। किंतु ऊष्मा द्वारा उत्पन्न कोयले की गुण विशिष्टता क्षेत्रीय कायांतरित कोयले से भिन्न होती है और इस कोयले को तापीय कायांतरित कोयले के नाम से जाना जाता है।

सारणी 3. भैमिकीय समय-मापक्रम

मामकाय समय-मापक्रम				
महाकल्प (Era)		कल्प (Period)	दस लाख वर्ष	
		होलीसीन (Holocene)	0.01	
		अत्यंत नूतन (Pleistoceme)	1.6	
		आदि नूतन (Pliocene)	5.3	
नव जीव महाकल्प	तृतीय	मध्य नूतन (Miocene)	23	
(Cenozoic)	महा कल्प	अल्प नूतन (Oligocene)	36	
		आदि नूतन (Eocene)	53	
	7	पुरानूतन (Palaeocene)	65	
	65	65		
	T	क्रिटेशस (Cretaceous)	135	
		जुरैसिक (Jurassic)	205	
		ट्राइऐसिक (Triassic)	250	
	250	F	250	
		परमियन (Permian)	290	
पुराजीव महाकल्प		कार्बनी (Carboniferous)	355	
(Palaeozoic)		डिवोनी (Devonian)	410	
		सिल्यूरिन (Silurian)	438	
		ऑर्डोविशन (Ordovician)	510	
		क्रैंब्रियन (Cambrian)	570	
	570		570	
प्राग्जीव महाकल्प	2500		2500	
(Proterozoic)				
आदृयमहाकल्प	4800		4800	
(Archaean)				

15. भारत में कोयला : भारत में कोयला निक्षेप पूरे देश में फैले हुए हैं और स्पष्टतः दो भू-वैज्ञानिक काल के हैं। भू-वैज्ञानिक काल को प्रदर्शित करने के लिए भू-वैज्ञानिक एक अलग समय मापक का प्रयोग करते हैं। भ-वैज्ञानिक ने सभी शैलों को पृथ्वी के रचनाकाल से लेकर वर्तमान समय तक 4 महाकल्पों में बाँटा है और जैसा कि सारणी 3 में दिखाया गया है प्रत्येक महाकल्प को पुनः कल्प तथा भू-वैज्ञानिक युग में विभाजित किया गया है। भारत में प्राचीनतम कोयला निक्षेप पर्मियन युग का पाया गया है जो प्रायः 27 करोड़ लाख वर्ष पूर्व का है जबिक समुद्र और भूमि का वितरण आज के जैसा नहीं था। उस समय दक्षिण अफ्रीका, दक्षिण अमेरिका, अंटार्कटिका, आस्ट्रेलिया, भारत एवं मैडागास्कर मिलकर एक भू-भाग थे जिसे गोंडवाना महाखंड कहा जाता था और ये भू-भाग अंटार्कटिक वृत्त के निकट थे। गोंडवाना महाखंड में उत्पन्न कोयले को गोंडवाना कोयला कहा जाता है। भारतवर्ष में प्राचीनतम कोयले की रचना के समय अर्थात पर्मियन युग में भारतवर्ष दक्षिणी अक्षांश के 55 और 65 के बीच तथा 32 से 82 देशांतर के बीच स्थित था। भारत की पूर्व स्थिति भी भिन्न थी और यह मोटे तौर पर पूर्व से पश्चिम दिशा में फैला था, अर्थात भारतवर्ष की वर्तमान उत्तरी दिशा पूर्व की ओर झुकी हुई थी। उपरि-क्रिटेशस युग में (सारणी 3) किसी समय प्रायः 8 करोड़ वर्ष पूर्व भारत घड़ी की सुइयों की तरह वामावर्त दिशा में चक्कर काटने और विस्थापित होने लगा जिसके फलस्वरूप यह अपने वर्तमान देशांतर में दस लाख वर्ष पूर्व आ गया था।

सारणी 4. भारत में कोयला निक्षेपों का भू-वैज्ञानिक वितरण

कोयला क्षेत्र	भू-वैज्ञानिक कल्प	प्राप्ति स्थान
तृतीय कल्प वे कोयला क्षेत्र	आरंभिक अत्यंत नूतन से उपरि अति नूतन	काश्मीर लिग्नाइट
	मध्य नूतन	दक्षिणी अकार्ट तिमलनाडु और केरल के वर्कला तथा क्विलोन लिग्नाइट

(जारी)	अल्प नूतन से उपरि आदि नूतन	ऊपरी असम के जयपुर नाजिरा और माकूम तथा अरुणाचल प्रदेश के नामचिक नामफुक कोयला क्षेत्र
	मध्य आदि नूतन	राजस्थान और कच्छ के लिग्नाइट
	निम्न आदि नूतन	दारंगिरी और रेंग्रेनिगरी, गारो पहाड़ियों के कोयले, चेरापूँजी, मावलांग और शिलांग, मेघालय के कोयले, मिकिर पहाड़ियों, ऊपरी असम के कोयले, कालाकोट, मेटका, महोगला, चाकर, धानवाल, सावलकोट, लोधा, कुरा, तथा चिंकाह, जम्मू क्षेत्र के कोयले।
ऊपरी गोंडवान कोयला क्षेत्र	उपरि जुरैसिक	महाराष्ट्र में कोटा समुदाय के चिकियाला और कोटा, सतपुड़ा क्षेत्र, मध्य प्रदेश में जबलपुर समुदाय, कच्छ में ऊमिया समुदाय के नीचे घुनेरी के कोयले।
	उपरि परिमयन	रानीगंज, झरिया, बोकारो और करनपुरा कोयला क्षेत्र, दामोदर घाटी, पश्चिमी बंगाल और बिहार।
निम्न गोंडवान कोयला क्षेत्र	निम्न परिमयन	भारतीय प्रायद्वीप के सभी निम्न गोंडवाना कोयला क्षेत्र, दामोदर-घाटी, महानदी घाटी, घाटी, सोन घाटी, पेंच कनहन घाटी, प्रनिहता गोदावरी घाटी, ब्राहमणी और वर्धा घाटी सहित, पूर्वी हिमालय के कोयला क्षेत्र, पश्चिमी बंगाल का दार्जिलंग जिला, सिक्किम में रंजीत घाटी, अरुणाचल प्रदेश में एवोर, दाफ्ला और आका पहाड़ियाँ।

भारत के कोयला और लिग्नाइट क्षेत्र

(अ) गोंडवाना कोयला क्षेत्र

		23/2/2/2015	DESCRIPTION OF PROPERTY OF THE		
संख्या	कोयला क्षेत्र	संख्या	कोयला क्षेत्र	संख्या	कोयला क्षेत्र
1.	रानीगंज	16.	गिरिडीह	31.	मोहपानी
2.	बरजोरा	17.	तातापानी	32.	जोहिला
3.	दार्जिलंग	18.	रामकोला	33.	उमरिया
4.	झरिया	18.	सिंगोली	34.	कोरार
5.	पूर्व बोकारो	20.	विश्रामपुर	35.	पेंच-कन्हन
6.	पश्चिम बोकारो	21.	झिलिमिली	36.	तवा घाटी
7.	रामगढ़	22.	सोनहट	37.	दूब नदी
8.	दक्षिण करनपुरा	23.	चिरिमिरी	38.	तालचीर
9.	उत्तर करनपुरा	24.	झमाखंड	39.	वर्धाघाटी
10.	चोप एवं इतखोरी	25.	कोरियागढ़	40.	काम्पटी
11.	औरंगा	26.	सोहागपुर	41.	उमरेर
12.	हुतार	27.	लाखनपुर	42.	बंदेर
13.	डाल्टनगंज	28.	हसदो-आरंद	43.	गोदावरी-घाटी
14.	राजमहल	29.	कोर्बा	44.	हिमालय गिरिपाद क्षेत्र
15.	देवगढ़	30.	मांद रायगढ़		
		ब. तृतीय	कल्प कोयला क्षेत्र		
45.	नामचिक नामफुक	49.	लाखुनी	53.	चेरापूंजी
46.	माकूम	50.	लांग्रिन	54.	कालाकोट
47.	दिल्ली-जयपुर	51.	दारंगिरी		
48.	नाजिरा	52.	सिजू		
		सः तृतीय	कल्प लिग्नाइट क्षेत्र		
55.	नेवेली	57.	पालना		
56.	उमरसार	58.	नीचाहोम		

सारणी 5. भारत में राज्य-वार कोयला क्षेत्रों का वितरण

अ. गोंडवाना कोयला क्षेत्र

	राज्य	कोयला क्षेत्र
1.	पश्चिम बंगाल	1. रानीगंज (बराकर के पूर्व), 2. बरजोरा, 3. डोमस फ्लगढ़ घाटी, 4. देवचा घाटी, 5. दार्जिलिंग।
2.	बिहार	 रानीगंज (बराकर के पश्चिम), 2. झिरया, 3. ब्रोकॉरी, पश्चिमी बोकारो, 5. रामगढ़, 6. उत्तरी करनपुरा, 7. दक्षिणी करनपुरा, 8. औरंगा, 9. हुतार, 10. डाल्टनगंज देवघर, 12. राजमहल।
3.	उत्तर प्रदेश	1. सिंगरोली।
4.	मध्य प्रदेश	1. जोहिला, 2. उमरिया, 3. पेंच-कन्हन-तवा घाटी, 4. पाथरखेड़ा, 5. गुरगुंडा, 6. मोहपानी, 7. सोहागपुर, 8. सिंगरोली (अंशतः), 9. सोनहट, 10. झिलमिली, 11. चिरमिरी, 12. विसराम पुर, 13. लाखनपुर, 14. हसदो-आरंद, 15. सुंदरगढ़, 16. मंद रायगढ़, 17. तातापानी-रामकोला।
5.	महाराष्ट्र	 चंद्रपुर-वर्धा घाटी, 2. काम्पटी, 3. उमरेर, 4. बंदेर, नान्द, 6. मकर-धोकरा, 7. बोखारा।
6.	आन्ध्र प्रदेश	1. गोदावरी घाटी
7.	उड़ीसा	1. दूब घाटी, 2. तालचीर।
		ब. तृतीय कल्प कोयला क्षेत्र
उत्तर	पूर्वी क्षेत्र	
1.	अरुणाचल प्रदेश	1. नामचिक-नामपुक

2.	असम	 दयांग घाटी, दिसाई घाटी, 2. जानजी, 3. दिखाउ घाटी (नाजिरा), 4. सफ्रादू घाटी, 5. जयपुर-दिल्ली, 6. माकुम, मिकिर पहाड़ियाँ कोयला जन, सेलवेला, खुनबामन, दिसोबाइ, लैंगलादू, दोआइगुंगनदी।
3.	मेघालय	1. खासी और जयंतिया पहाड़ियाँ-उम रिलेंग,मानवेबलरकर, सिरमंग, बापुंग, मावसिनरम, मावलांग, चेरापूँजी-लैतृप्रियु, पाइनुर्सला, लोकडांग 2. गारो पहाड़ियाँ- तुरा (कराइबारी) रैंग्रेनिगरी, पश्चिमी दारंगिरी, सिंजू, पूर्व दारंगिरी, लैंग्रिन (अनब्लाइ)।
4.	जम्मू एवं काश्मीर	कालाकोट, मेटका, महोगला, चक्कर, धांसवाल, स्वालकोट, लोधा, लद्दा, (जंगलगली), कुरा, चिंकाह।
		स. लिग्नाइट
1.	राजस्थान	पालना, गुरहा, बरसिंघसार (बीकानेर जिले में), मर्ता-मोकला (नागौर जिले में), कपूर्दी - जालिपा (बारमेड़ जिले में)।
2.	तमिलनाडु	नैवेली (कुड्डालोर-पांडिचेरी क्षेत्र)
3.	केरल	बर्कला-क्विलोन
4.	गुजरात	उमरसार, मातानो-मध, झुतारी-बागापदार, पनांद्रो, ऐक्रीमोटा, लखपत, मनधारिया, भेनी।
5.	जम्मू एवं काश्मीर	नीचाहोम

तृतीय भू-वैज्ञानिक युग के अन्य निक्षेपों की उत्पत्ति अपेक्षाकृत हाल में 3 से 6 करोड़ वर्ष पूर्व हुई है। सारणी 4 में भारतीय कोयला क्षेत्रों का भू-वैज्ञानिक वितरण दिखाया गया है, चित्र (13) में इनका भौगोलिक वितरण दिया गया है तथा सारणी (5) में कोयले का राज्यवार वितरण दिखाया गया है।

16. भारत के कोयला क्षेत्र (भौगोलिक वितरण) :

(i) गोंडवाना कोयला : भारत में कोयला उत्पादन का 99% गोंडवाना कोयले का है जो तीन भू-वैज्ञानिक इकाइयों में मिलता है—

- (क) रानीगंज शैल समूह
- (ख) बराकर शैल समूह
- (ग) करहरबारी शैल समूह

करहरवारी शैल समूह भारतवर्ष का वह प्राचीनतम शैल समूह है जिसमें कोयला पाया जाता है।

- 1. हिमालय क्षेत्र : हिमालय की पूर्वी तराई में अरुणाचल प्रदेश के उत्तर पूर्व कोने से पश्चिम में सिक्किम तक कुछ छिटपुट कोयला क्षेत्र हैं जो पूर्व से पश्चिम की ओर मिश्मी, अवोर पहाड़, मिरी, डाफला, आका, बक्सा, दुआरस दार्जिलिंग और सिक्किम तक पाए जाते हैं। ये क्षेत्र अगम्य हैं और आर्थिक दृष्टि से कम महत्व के हैं। इनमें पाए जाने वाले कोयला-संस्तर भ्रंशित और संदलित हैं। इसके अतिरिक्त कोयला पर्याप्त मात्रा में उपलब्ध भी नहीं है।
- 2. राजमहल क्षेत्र: पिछले कुछ वर्षों से पूर्वी विहार के राजमहल कोयला क्षेत्र महत्वपूर्ण हो रहे हैं। गंगा के दक्षिणी तट पर स्थित इन कोयला क्षेत्रों में सुविधापूर्वक उत्तरी बिहार, उत्तरी बंगाल और बांगलादेश के बड़े विद्युत् केंन्द्रों को कोयले की आपूर्ति होने रहने की भरपूर संभावना है। इस इलाके के कोयलों पर आधारित एक परातापीय विद्युत् केंद्र का निर्माण फरक्का में किया गया है। इसमें पाँच कोयला क्षेत्र हैं जो उत्तर- दक्षिण दिशा में प्रायः 60 किलोमीटर के क्षेत्र में फैले हुए हैं। ये क्षेत्र हैं हुरा, गिलहूरिया या जिलारी, चुपरभिता, पचवारा और बहमनी।
- 3. बीरभूमि कोयला क्षेत्र—यह कोयला-क्षेत्र राजमहल और रानीगंज कोयला क्षेत्रों के बीच स्थित हैं। अपेक्षाकृत हाल के वर्षों में इन कोयला क्षेत्रों की खोज वेधन-छिद्रों द्वारा की गई है देवचा-पचमी क्षेत्र में कई कोयला संस्तरों का पता चला है। एक वेधन छिद्र में प्रायः 351 मीटर से लेकर 519 मीटर की गहराई के बीच में 101.83 मीटर की कुल मोटाई के कोयला संस्तर पाए गए हैं। कुछ मोटे सेक्शनों में जो 17 से 33 मीटर तक के हैं, अच्छी किस्म का कोयला मिलता है। इस कोयला क्षेत्र के विकास की अच्छी संभावना है।
- 4. देवघर क्षेत्र: गिरिडीह के पूर्व कुछ वर्ग किलोमीटर में फैले तीन कोयला-क्षेत्र कुंडित कारिया, सहारज्री तथा जयंती हैं जिनका व्यावसायिक महत्व बहुत अधिक नहीं है।
- 5. गिरिडीह समूह के कोयला क्षेत्र: इस समूह में गिरिडीह चोप और इतखोरी कोयला क्षेत्र आते हैं। इन कोयला क्षेत्रों में गिरिडीह सबसे प्रमुख है। भारत के कुछ उत्तम श्रेणी के कोककारी कोयले गिरिडीह क्षेत्र से निकाले गए थे।
- 6. दामोदर घाटी कोयला क्षेत्र—दामोदर घाटी में 5 कोयला क्षेत्र—(अ) रानीगंज, (ब) झिरया, (स) बोकारो, (द) करनपुरा, और (य) रामगढ़ सिम्मिलित हैं।

(अ) रानीगंज कोयला क्षेत्र : इस कोयला क्षेत्र का अधिकांश भाग पश्चिम बंगाल में और कुछ हिस्सा (पश्चिमी भाग) बिहार में पड़ता है। झरिया कोयला क्षेत्र के बाद भारतवर्ष में यह सबसे महत्वपूर्ण कोयला क्षेत्र है और इसका क्षेत्रफल 1500 वर्ग किलोमीटर है। किंतु इसकी पूर्वी सीमा से आगे बहुत अधिक दूरी तक वह कोयला क्षेत्र है जहाँ कोयलाधारक चट्टानें कछार की मोटी तह से ढकी हुई हैं। समय-समय पर रेलवे तथा गैर-सरकारी प्रतिष्ठानों द्वारा किए गए वेधन छिद्रों से कोयले का निकलना इसका प्रमाण है। रानींगंज कोयला क्षेत्र में कोयला संस्तर बराकर तथा रानीगंज दोनों शैल समूहों में पाए जाते हैं।

रानीगंज कोयला क्षेत्र के रामनगर, लइकडीह, बेगनियाँ, पोनियाती और दिसेरगढ़ के संस्तरों के कोयले का उपयोग धातुकर्मीय कोक बनाने के लिए या तो अकेले अथवा अत्यधिक कोककारी झरिया कोयले में मिलाकर किया जाता है। दिसेरगढ़, संक्तोरिया, और पोनियाती कोयला संस्तरों में उत्तम कोटि का गैस कोयला भी मिलता है।

रानीगंज कोयला क्षेत्र के दमगोड़िया, सालनपुर (अ), गौरांगडीह, सामला, रघुनाथ बाती, जामबाद, नेगा, घूसिक और बाजना में अकोककारी कोयला मिलता है।

- (ब) झिरया कोयला क्षेत्र : पूरे भारतवर्ष में सभी कोयला क्षेत्रों में झिरया कोयला क्षेत्र सबसे अधिक महत्वपूर्ण है। भारत में कोयला उत्पादन की पूरी मात्रा का लगभग 40% इस क्षेत्र से होता है। झिरया कोयला क्षेत्र में कोयला धारक चट्टानों का कुल क्षेत्रफल 456 वर्ग किलोमीटर है। यहाँ बराकर शैल समूह के 49 कोयला संस्तर हैं। इनमें से 26 कोयला संस्तरों से स्थानीय तौर पर कोयला निकाला जाता है क्योंकि ये संस्तर लगातार नहीं पाए जाते हैं। बाकी 23 कोयला संस्तरों का फैलाव क्षेत्रीय है और इनमें से कोयले का उत्पादन दशकों से हो रहा है। बराकर शैल-समूह के कोयला संस्तरों को क्रिमिक रूप से संख्याबद्ध किया गया है—सबसे नीचे पाए जाने वाले संस्तर को पहला (I) और सबसे ऊपर के संस्तर को अठारहवाँ (XVIII)। अन्य संस्तरों को अधिक विशिष्ट संस्तरों वाली संख्या के साथ वर्णमाला के अक्षरों का आकार प्रयोग करके संबद्ध किया गया है। झिरया कोयला क्षेत्र के बराकर शैल समूह के कोयलों को तीन वर्गों में विभाजित किया जा सकता है:
- (क) कम वाष्पशील कोयले जिनमें वाष्पशीलता 26% तक होती है (शुष्कता आधार पर, किंतु राख-मुक्त नहीं)।
 - (ख) मध्यम वाष्पशील कोयले जिनमें वाष्पशीलता 26-28% तक होती है, और
 - (ग) उच्च वाष्पशील कोयले जिनमें वाष्पशीलता 28% से अधिक होती है।

रानीगंज शैल-समूह के कोयले में इन कोयलों से थोड़ी अधिक नमी होती है। ये अन्य मामलों में इस क्षेत्र के बराकर शैल समूह के उच्च वाष्पशील कोयलों के समान होते हैं। रानीगंज शैल-समूह में 13 कोयला संस्तर हैं। ऊपर के 9 संस्तरों में पाए जाने वाले कांयले आमतौर पर अच्छी किस्म के कोककारी कोयले हैं।

देश में सर्वश्रेष्ठ कोककारी कोयले (मूल कोककारी) बराकर शैल-समूह के ऊपरी कोयला संस्तरों (IX से XVIII) में पाए जाते हैं। इसलिये झरिया कोयला क्षेत्र को भारत में धातुकर्मीय कोयले का सर्वाधिक महत्वपूर्ण भंडार कहना उचित ही है। निम्नकोटि का कोककारी कोयला (उच्च राख वाला कोककारी कोयला) जैसा कि झरिया क्षेत्र में पाया जाता है, भारत में उपलब्ध सबसे बढ़िया घरेलू ईंधन (मुलायम कोक) बनाता है। चूँकि मुलायम कोक खुले में बनाया जाता है, इसलिए करोड़ों रुपये की कीमत के उपोत्पाद नष्ट हो जाते हैं।

- (स) बोकारो कोयला क्षेत्र : झिरया कोयला क्षेत्र के पश्चिम में बोकारो कोयला क्षेत्र स्थित है। इस कोयला क्षेत्र में 29 कोयला संस्तर हैं। इनकी मोटाई 1.2 से 45 मीटर तक है। इस क्षेत्र के मोटे, प्रमुख कोयला संस्तर करगली (12-45 मीटर), बेरमों (12-14 मीटर) और कारो (21-30 मीटर) हैं। कुछ कोयले अत्यधिक कोककारी और अच्छी किस्म के हैं।
- (द) करनपुरा कोयला क्षेत्र: बोकारो कोयला क्षेत्र के निकट पश्चिम की ओर करनपुरा कोयला क्षेत्र है। यह कोयला क्षेत्र दो भागों में विभाजित हैं—उत्तरी क्षेत्र प्राय 1230 वर्ग किलोमीटर में फैला है और उत्तरी करनपुरा कोयला क्षेत्र के नाम से जाना जाता है। दक्षिणी भाग जिसका क्षेत्रफल प्रायः 195 वर्ग किलोमीटर है, दिक्षणी करनपुरा कोयला क्षेत्र के नाम से पुकारा जाता है। उत्तरी करनपुरा कोयला क्षेत्र में अच्छी मोटाई वाले कुछ कोयला संस्तर डकरा (19 मीटर), बुक बुका (17.7 मीटर), विश्रामपुर (16.8 मीटर) और कर्कटा (19.8 मीटर) हैं। सामान्यतः कोयले निम्नकोटि के हैं इनमें नमी की मात्रा (8-12%) बहुत अधिक होती है, राख की मात्रा भी अधिक (14-35%) है और आमतौर पर कोयला अकोककारी है।

दक्षिण करनपुरा कोयला क्षेत्र के कोयला संस्तरों में अरगदा और सिरका या गिदी कोयला संस्तर महत्वपूर्ण हैं। अरगदा कोयला संस्तर की मोटाई 35 मीटर तक है जबिक प्ररूप क्षेत्र में सिरका कोयला संस्तर की मोटाई 12.0 मीटर है। इन संस्तरों के कोयले आमतौर पर उत्कृष्ट कोटि के हैं और इनसे अच्छा व कठोर कोक बनाया जाता है।

- (य) रामगढ़ कोयला क्षेत्र : इस कोयला क्षेत्र की कोयला धारक चट्टानें प्रायः 100 वर्ग किलोमीटर में फैली हुई हैं। इनमें बहुत से मोटे कोयला संस्तर हैं किंतु उनमें पाया जाने वाला कोयला निम्न कोटि का है।
- 7. पलामू कोयला क्षेत्र : इस क्षेत्र में औरंगा हुतार और डाल्टनगंज कोयला क्षेत्र शामिल हैं राजहरा रेलवे स्टेशन के पास एक कोयला संस्तर की मोटाई 8.8 मीटर है। इसे राजहरा मुख्य संस्तर कहा जाता है। कुछ कोयला संस्तर अर्ध-ऐन्श्रासाइटी कोटि के हैं।

8. सोनघाटी कोयला क्षेत्र: इस इलाके में सिंगरौली सबसे प्रमुख कोयला क्षेत्र है। इस कोयला क्षेत्र में कोयला संस्तर की मोटाई 131.56 तक है। सिंगरौली कोयले पर आधारित इस क्षेत्र में कई विद्युत उत्पादन केंद्रों की स्थापना की गई है और इनके विस्तार की भी महत्वाकांक्षी योजनाएं हैं।

सोनघाटी कोयला क्षेत्र में सोहागपुर एक दूसरा महत्वपूर्ण क्षेत्र हैं। सोहागपुर कोयला क्षेत्र के चरचा-कटकोना इलाके का कोयला कमजोर कोककारी से अकोककारी किस्म का है और इसका उपयोग भिलाई स्टील प्लांट में कोककारी मिश्रण में घटक के रूप में किया जाता है।

9. मध्य प्रदेश में छत्तीसगढ़ कोयला क्षेत्र छत्तीसगढ़ क्षेत्र में प्रायः 18 कोयला क्षेत्र सिम्मिलित हैं। इन कोयला क्षेत्रों में कुरेसिया, विश्रामपुर, लाखनपुर और कोरबा क्षेत्र महत्वपूर्ण हैं। विश्रामपुर कोयला क्षेत्र में कुछ संस्तर ऐसे पाए जाते हैं जिनके कोयले में राख की मात्रा कम (7-10%) होती है। सोनहट क्षेत्र में उपकोककारी कोयला भी मिलता है।

कोरबा कोयला क्षेत्र में कोयले की अच्छी अंभावनाएं हैं और यह अधिक महत्वपूर्ण हो गया है क्योंकि यहाँ का कोयला निरंतर भिलाई स्टील संयंत्र और विद्युत उत्पादन केंद्रों द्वारा उपयोग में लाया जा रहा है। दक्षिण-पूर्व रेलवे के कैम्पा रेलवे स्टेशन से 38 किलोमीटर पश्चिम में कोरबा शहर है। इस शहर के आस-पास निचली हसदो घाटी में कोरबा कोयला क्षेत्र लगभग 750 वर्ग किलोमीटर में फैला हुआ है और इसमें प्रायः 21 कोयला संस्तर हैं। इसमें से एक घोरदेवा कोयला संस्तर (1.6 मीटर मोटा) कमजोर कोककारी है किन्तु इस कोयले को झिरया कोककारी कोयले के साथ मिलाकर अच्छी किस्म के धातुकर्मीय कोक का उत्पादन किया जा सकता है।

कोरबा रेलवे स्टेशन के पास 30.48 मीटर मोटा जटराज कोयला संस्तर है जिसका कोयला विवृत खनन पद्धित से निकाला जाता है। इस संस्तर की मोटाई में विभिन्न स्थानों पर बहुत अधिक भिन्नता पाई जाती है, जटराज के पास झेंगानाल में इसकी मोटाई 24 मीटर है जबिक कुसमुंडा में यह 45.72 मीटर है। घोरदेवा कोयले की खपत मुख्यतः भिलाई स्टील संयंत्र एवं रेलवे द्वारा की जाती है। मध्य प्रदेश विद्युत बोर्ड द्वारा अधिक राख वाले कोयले का उपयोग किया जाता है।

10. महानदी घाटी कोयला क्षेत्र : महानदी घाटी के कोयला क्षेत्रों में तालचीर और दूब नदी कोयला क्षेत्र अधिक महत्वपूर्ण है और इनमें गोंडवाना कोयले के कुल भंडार का प्रायः चौथाई अंश भरा पड़ा है। तीन प्रमुख क्षेत्रीय कोयला संस्तरों में से दो लाजकुरा (42.0 से 59.4 मीटर) और रामपुर (17.5 से 42.3 मीटर) की मोटाई अधिक है।

- 11. सतपुरा इलाका : इस इलाके में पेंच और कन्हान घाटी कोयला क्षेत्र अधिक महत्व के हैं। कन्हान घाटी क्षेत्र के कुछ कोयले मध्यम कोककारी किस्म के हैं। दामोदर घाटी कोयला क्षेत्र से बाहर मध्यम कोककारी कोयला पाया जाना दुर्लभ है।
- 12. नागपुर इलाका : इस इलाके में उमरेर और काम्पटी कोयला क्षेत्र हैं। महाराष्ट्र के कोराडीह में काम्पटी कोयले का उपयोग एक अतितापीय विद्युत केंद्र (1100 मेगावाट) द्वारा किया जाता है।
- 13. वर्षा घाटी कोयला क्षेत्र—वर्धा नदी की घाटी में कई कोयला खदाने हैं। यहाँ के कोयला संस्तर अधिकांशतः मोटे हैं और इनकी मोटाई 4 मीटर से अधिक है। धुगुस तेलवासा क्षेत्र में एक कोयला संस्तर की मोटाई 24 मीटर है।
- 14. गोदावरी घाटी कोयला क्षेत्र—वर्धा घाटी के क्रम में गोदावरी घाटी का कोयला क्षेत्र है। इन कोयला क्षेत्रों की अच्छी संभावनाएँ हैं। इनमें सिंगरेनी कोयला क्षेत्र सबसे प्रमुख हैं।
 - (ii) तृतीय कल्प के कोयले एवं लिग्नाइट-
- 15. कोयले एवं लिग्नाइट—तृतीय भू-वैज्ञानिक युग की अविध में उपिबरुमेनी या लिग्नाइटी कोयला एवं लिग्नाइट की उत्पत्ति हुई। मेघालय, असम एवं अरुणाचल प्रदेश के कोयले अधिकांशतः उपिबरुमेनी अथवा लिग्नाइटी कोयले से अधिक परिपक्व होते हैं।

तिमलनाडु के दिक्षणी आरकाट जिले के कुडालोर इलाके में लिग्नाइट के बड़े निक्षेप पाए जाते हैं। दिक्षणी रेलवे की कडालोर वृद्धाचलम् शाखा पर निवेली रेलवे स्टेशन के आस-पास यह क्षेत्र स्थित है। लिग्नाइट का विस्तार लगभग 330 वर्ग किलोमीटर में है और इसमें प्राय 3,330 करोड़ टन से भी अधिक लिग्नाइट का भंडार है।

आर्थिक महत्व के अन्य लिग्नाइट निक्षेप जम्मू और काश्मीर, राजस्थान और गुजरात के कुछ इलाकों में पाए जाते हैं।

सभी लिग्नाइट निक्षेपों में नेवेली लिग्नाइट, निचय एवं उपयोग की दृष्टि से इस समय सर्वाधिक महत्वपूर्ण हैं। वैसे सभी लिग्नाइट निक्षेप ऐसे क्षेत्रों में पाए जाते हैं जहाँ ये ईंधन की बहुत बड़ी आवश्यकता को पूरी करते हैं और भविष्य में भी इनके उपयोग की प्रबल संभावनाएँ हैं।

16. पीट—भारत में पीट नीलिगिरि और कलकत्ता तथा उसके आसपास के क्षेत्रों में पाया जाता है नीलिगिरि में पीट स्वस्थाने हैं। कलकत्ता में तथा उसके आस-पास के पीट बंगाल की खाड़ी के सुंदरबन में हैं और मूलतः सुंदरी वृक्षों के अवशेषों से उत्पन्न हुए हैं। इन पीटों में अनेक वानस्पतिक अवशेष पाए जाते हैं जो सुदूर स्थानों से बहाकर लाए गए हैं, उदाहरण के लिए "मखाना" के बीज बांगला देश के ढाका क्षेत्र से बहकर आए हैं।

	सार	गी 6. भारत	के विभिन	न कोयला	क्षेत्रों के कोर	यले के राम	सारणी 6. भारत के विभिन्न कोयला क्षेत्रों के कोयले के रासायनिक गुण				
कोयला क्षेत्र	संस्तर	वी	वायु शुष्क आधार पर विश्लेषण	ार पर विश्ले	ब्रण		शुष्क खनिज मुक्त आधार पर विश्लेषण	क्त आधार प	र विश्लेषण		
		नमी का अंश %	भस्म %	गंधक %	फॉस्कोरस %	वाष्यशील पदार्थ %	कैलोरीमान की. कैल. % कीलो	कार्बन %	हाइड्रोजन %	ग्रेकिंग (एल.टी.सी) कोक का प्रकार	
दामोदर कोयला घाटी				ক	अ. निम्न गोंडवाना कोयला	। कोयला					
1. रानीगंज											
(अ) रानीगंज रामुगंज समुदाय	दिसेरगढ़, सैक्टोरिया इत्यादि	2.5-3.5	15-20	0.5-0.7	0.01-0.15	39-44	8110-8450	83-85	5.3-5.8	रु-जी 1	
	सामला-जामबाद-इ त्यादि	3.0-11.0	13-25	0.5-0.7	0.5-0.7 0.01-0.15	39-42	7610-8170	79-82	5.2-5.5	ए-बी	(33)
(ब) बराकर समुदाय	लायकडीह-चांच इत्यादि	0.8-2.0	15-25	0.5-0.7	0.01-0.20	25-36	8440-8830	06-98	4.5-5.4	क्-जी	
	सालानपुर इत्यादि	0.8-2.0	25-35	0.5-0.8	0.5-0.8 0.01-0.18	25-35	8300-8800	87-90	4.5-5.2	बी-डी	
2. बरजोरा	I-IX	3.0-8.0	26-36	0.4-0.9	0.01-0.36	37-43	7810-8060	81-84	4.8-5.7	Þ	
3. झरिया											
(अ) रानीगंज समुदाय	रानीगंज महुदा-लोहपिटी, इत्यादि	1.5-2.2	20-25	0.5-0.7	0.5-0.7 0.20-0.40	36-40	8440-8550	85-87	5.4-5.8	ई-एफ	

١
1

					(34)			
सी.एफ	जी-जी8	डी-जी2	ई-जी4	सी-डी	डी-जी3	रू- <u>ज</u> ी		ई-जी3	ए-सी
4.5-4.9	4.6-5.4	4.5-5.4	4.5-5.1	4.9-5.1	4.6-5.3	4.5-5.3		4.9-5.3	4.0-4.9
90-93	87-91	85-90	06-98	84-86	86-91	85-87		85-91	79-82
8550-8890	8440-8890	8330-8670	8440-8780	8170-8370	8440-8780	8220-8780		8330-8780	7400-8000
17-28	22-35	28-36	24-37	34-37	21-36	24-38		30-40	35-42
0.5-0.8 0.05-0.30	0.05-0.30	0.05-0.40	0.5-0.7 0.06-0.17	0.10-0.35	0.5-0.6 0.03-0.35	0.01-0.25		0.5-1.0 0.06-0.34	0.2-0.8 0.01-0.23
0.5-0.8	0.5-0.7	0.5-0.9	0.5-0.7	0.5-0.7	9.5-0.6	0.6-1.0		0.5-1.0	0.2-0.8
18-35	15-25	15-27	17-28	15-22	21-35	18-30		20-35	15-30
0.6-1.5	0.6-2.0	0.8-2.4	से 0.7-1.9	4.2-4.7	0.5-2.5	0.5-3.0		0.5-3.0	5-10
I-VIII	IX-XVIII	रो जारंगडीह में उचित डीह	करगली से से कारोतल	कुन्नू, मुर्पा, इत्यादि	V-VIII	VI-VIII ए		I-VI	I-VI
(ब) बराकर समुदाय	8	4. पूर्व बोकारो बराकर समुदाय		5. पश्चिम बोकारो बराकर समुदाय	Del.	6. रामगढ़ (प्रखंड I,II,IV) बराकर समुदाय	7. उत्तर करनपुरा बराकर समुदाय	(अ) चानो-रिक्वा, वदाम-इस्को इत्यादि	(ब) बचरा, चुरी, मानकी पिंडरकाम, इत्यादि

d =				Jle Je	4100			
प्-मी	Þ	Þ		ई-जी6	क् रहे	Þ	Þ	Þ′
4.7-5.2	4.2-4.5	3.5-4.0		4.7-5.2	4.6-5.1	4.5-5.2	4.0-5.2	3.5-4.0
80-84	80-81	89-93		89-91	88-90	80-83	78-81	90-93
7800-8100	7500-7700	8500-8560		8725-8950	8000-8850	7300-7900	7400-7800	8450-8700
37-40	35-40	4-13		27-33	27-33	38-42	38-40	14-18
0.4-0.8 0.03-0.2	0.005-	0.005-		0.4-0.6 0.01-0.04	0.3-0.4 0.02-0.16	0.002-	0.005-	1
0.4-0.8	0.3-0.5	0.4-0.7		0.4-0.6	0.3-0.4	0.3-0.5	0.3-0.7	1
15-30	18-14	13-18		12-22	20-34	15-35	20-45	19-23
2.5-8.0	6-10	3-4		0.6-1.3	0.7-1.3	5-9	8-10	1-5
अरगदा समूह, 2.5-8.0 सिरका, सौंडा, नक्री, इत्यादि	п	राजहारा "ए"	E.	ऊपरी एवं निम्न 0.6-1.3 करहरवारी,भादुआ	खानदिहा, बालीहिल,इत्यादि	1111	IIX-I	ı
8. दक्षिण करनपुरा, बराकर समुदाय	9. हुतार करहरवारी समुदाय	10. डाल्टनगंज करहरवारी समुदाय	गिरीडीह-राजमहत्त क्षेत्र 1. गिरीडिह	(अ) करहरवारी समुदाय	(ब) बराकर समुदाय	2. देवघर, बराकर समुदाय	3. राजमहल, बराकर I-XII समुदाय	दार्जीलेंग, बराकर समुदाय

						(36))				
	Þ	Þ		Þ⁄	सी-डो	Þ	Þ	Þ	Þ	Þ	ए-वी
	4.5-4.8	4.4-5.3		4.8-5.2	4.9-5.2	4.5-5.2	4.2-4.8	4.2-5.3	4.2-4.8	4.3-5.1	4.9-5.3
	76-78	78-81		79-84	85-87	80-83	80-83	81-84	78-81	78-84	79-82
	7095-7300	7640-7750		7740-8465	8220-8440	7750-8100	7600-8100	7780-8170	7300-7600	7400-7800	7830-7940
	40-42	37-45		34-40	33-40	36-38	35-38	32-41	35-38	32-40	35-45
	0.4-0.06 0.01-0.04	0.02-0.03		0.001-	0.002-	0.005-	0.004-	0.005-	ı	I	0.003-
	0.4-0.06	0.5-0.7		0.4-0.6	0.3-0.6	0.3-0.4	0.4-0.6	0.5-0.8	ı	0.5-0.7	0.5-0.7
	25-35	15-30	14	15-30	15-25	12-20	14-18	15-35	15-20	15-35	15-40
	6-8	7-9		5-9	2-4	5-7	5-9	6-9	7-10	6-9	8-9
i.e	ਹ	तुरा, पुरेवा, इत्यादि		कोत्मा,			, पातपहाड़ी, द	ज, घोरदेवा, द		दूब, रामपुर, लाजकुश, इत्यादि	
119	झींगुरदा	तुरा, पु		I-III, इत्यादि	N-II	III-III	पासंग, इत्यादि	जटराज, इत्यादि	1	दूब, लाजबु	I-IV
सोन-महानदी घाटी	सिंग्रौली रानीगंज समुदाय	बराकर समुदाय	2. सोहागपुर	(अ) रुंगटा, कोत्मा, झंगाखंड	(ब) चर्चा, कटकोना	3. चिरीमिरी	4. विश्रामपुर	5. कोरबा	6. लाखनपुर	7. दूब नदी	8. तालचीर

पेंच-कन्हान-तवा घाटी	фī										
1. दातला (पश्चिम) रावनवाड़ा,इत्यादि	т-ш	2-6	15-25	0.5-0.7	0.02-0.05	32-38	7650-8140	82-85	4.8-5.4	सी-डो	
2. दामुआ, राखीकोल,इत्यादि	ш-ш	2-5	18-24	0.6-1.0	0.05-0.06	32-38	8520-8710	68-98	5.1-5.5	डी-एफ	
3. पाथरखेड़ा	I-IV	2-4	25-30	0.5-0.8	1	33-40	8500-8790	84-86	5.4-5.8	म्र	
4. तंदसी-नानखरक I-III क्षेत्र	1-Ш	2-4	20-25	1	1	33-35	8620-8730	87-89	5.3-5.4	सी-डी	
वर्धा घाटी		. 8				200	•				
1. काम्पटी, उमरेर, II-V पीपला,इत्यादि	л-п	7-10	15-30	0.5-0.9	0.01-0.04	35-40	7250-7860	78-82	4.2-4.6	(37) ⊭	1001
2. मैयरी, बल्लारपुर, घुगुस, राजूर, इत्यादि	I-IV	8-11	15-25	0.4-0.8	0.01-0.05	38-45	7220-7750	76-80	4.3-5.1	Þ⁄	
गोदावरी घाटी			55 6								
1. कोथागुडम, तंदूर, कामागुडम, इत्यादि	सालारजंग किंग, क्वीन,रास,इत्यादि	8-9	15-25	0.3-0.7	0.005-	35-40	7300-7950	78-82	4.2-5.1	Þ, º	
2. गोलेट, लिंगोला, I-IV वेलमपल्ली	I-IV	5-8	15-30	0.4-0.8	0.01-0.05	35-42	7590-8000	78-83	4.5-5.4	Þ	
so.		23	•			T					

असम			् ज	1) तृतीय क	(ब) तृतीय कल्प के कोयले	-					
1. माकूम,इत्यादि	1	2-3	5-15	2.0-6.0	0.001-	42-48	8000-8500	74-82	5.4-6.0	जी-जी	
2. दिल्ली-जयपुर, इत्यादि	ı	4-16	8-20	0.4-0.8	0.4-0.8 0.01-0.02	45-50	7250-8000	75-79	5.5-6.3	ए-बी	
जम्मू एवं काश्मीर							-				
1. कालाकोट, जंग- लगली इत्यादि	1	0.5-2.0	10-35	0.6-7.0	0.002-	13-17	8380-8730	91-93	3.9-4.2	Þ	
			(4		तृतीय कल्प के लिग्नाइट	N					
तमिलनाडु					£					(3	
1. नेवेली		10-30	5-10	0.5-2.0	0.002	52-60	6450-6600	70-73	4.6-5.5	8)	
गुजरात											
1. पनान्ध्रो		15-35	7-20	3-6	1	20-60	6720-7000	68-72	5.1-5.6	1	
2. उमरसार		10-25	10-18	2-3	0.002-	45-50	6500-7230	02-89	4.5-5.3	1	
राजस्थान											
1. प्लाना		25-37	8-4	2-4	0.004-	45-58	0001-0289	72-75	4.5-5.5	Ī	

17. भारतीय कोयले की विशिष्टता—भारत में पीट से लेकर अर्ध-ऐन्थ्रासाइट तक के सभी प्रकार के कोयले पाए जाते हैं ।केवल ऐन्थ्रासाइट भारत में उपलब्ध नहीं है। गुणवत्ता में गोंडवाना कोयले में राख की मात्रा (20% से अधिक) सामान्यतः अधिक है।

तृतीय कल्प के कोयले साधारणतः गुणवत्ता में अधिक नमी, कम राख और अधिक गंधक की मात्रा वाले होते हैं। वायु-शुष्कता के आधार पर इन कोयलों में अपेक्षाकृत राख की मात्रा कम (प्रायः 8-10%) के बीच होती है। कोयलों में गंधक की मात्रा का अधिकांश भाग कार्बनिक गंधक के रूप में होता है। साधारणतः इन कोयलों में गंधक की कुल मात्रा 2% से 7% के बीच होती है।

तृतीय कल्प के लिग्नाइट में नमी की मात्रा (10% से 20%) या इससे भी अधिक) अधिक होती है। इसके अतिरिक्त इनमें गोंडवाना या तृतीय कल्प के कोयले की अपेक्षा वाष्पशील पदार्थों की अधिकता (50% से 60% तक) होती है।

भारत के विभिन्न कोयला क्षेत्रों से प्राप्त अलग-अलग किस्म के कोयलों की गणवत्ता सारणी 6)में दी गई है।

18. कोयले का श्रेणीकरण—व्यावसायिक उद्देश्य से अर्थात् कोककारी और अकोककारी कोयले की खरीद एवं बिक्री के लिए विभिन्न प्रकार की श्रेणीकरण पद्धितयाँ प्रयोग में लाई जाती हैं जैसािक सारणी 7 में नीचे दिया गया है। कोककारी कोयले की श्रेणी राख की मात्रा के प्रतिशत पर निर्भर करती है।

सारणी 7. भारत के कोककारी कोयले की व्यापारिक श्रेणी

श्रेणी	राख की मात्रा
इस्पात श्रेणी I	15% से ज्यादा नहीं
इस्पात श्रेणी II	15% से ज्यादा परंतु 18% से कम
वाशरी श्रेणी I	18% से ज्यादा परंतु 21% से कम
वाशरी श्रेणी II	21 % से ज्यादा परंतु 24% से कम
वाशरी श्रेणी III	24 % से ज्यादा परंतु 28% से कम
वाशरी श्रेणी IV	28% से ज्यादा परंतु 35% से कम

भारतीय कोयले का वर्गीकरण एवं कोककारी कोयले की विशिष्टता अग्र पृष्ठ सारणी 8 में दी हुई है।

सारणी 8 भारतीय कोयले का वर्गीकरण एवं कोककारी कोयले की विशिष्टता

काथल का वंशाकरण एवं काककारा काथल (भारतीय मानक:770-1977 के अनुसार)

ï	r	ı.	ř	(40)				
	पदार्थ मुक्त	Н%	4.5-5.5	4.6-5.1	5.3-6.3	4.7-5.2	5.0-5.4		
अन्य प्राप्तल	शुष्क खनिज पदार्थ मुक्त	%3	67-73	76-79.5	75-82.5	79.5-83.0	82.5-83.5		
	इकाई	कायला नमा 40° से. 60% आपेक्षिक आदेता	20	10-20	2-9	7-11	5-7		
	कोक प्रकार	600° स.	Þ	Þ	ए-जी3+	र्-बी	सी-डो		
मूल प्राप्तल	शुष्क खनिज पदार्थ मुक्त	वाष्पशील ग्दार्थ %	50	33-50	43	27-43	33-43		
	शुष्क खनिज	शुष्क खनिज	शुष्क खिन	कैलोरीमान किलो कैलोरी/ किलो ग्राम	6150-7300	6950-7500	7500-8500	7500-8250	8250-8400
E ,			अकोककारी	अकोककारी	अकोककारी से अति कोककारी	अकोककारी	निर्बल कोककारी		
संकेताक्षर			एल	एस.बी.	_레	बी 2	बु		
प्रकार			संहत/ संघटित / संचित	उच्च वाष्पशील	उच्च वाष्पशील ब (असम कोयला)	मध्य से उच्च वाषशील	उच्च वाष्पशील		
臣			लिग्नाइट	उपविदुमेनी	विदुमेनी				

		(41)			
5.0-5.8	4.7-5.0	4.8-5.2	4.5-4.9	4.2-4.5	3.7-4.2	3.77
83.5-87.5	86.5-88.0	88-90.5	90.5-91.5	91.5-92.0	92.0-93.0	93.0
2-5	2	2	7	5	2	1
ई-जी ₃ +	सी-एफ	सी-जी ₃ +	सी-डो	ए-डी	Þ	Þ
33-43	22-33	22-33	18-20	15-18	10-15	10
8280-8500	से 8500-8700	8500-8900	से 8500-8900	8250-8700	8250-8700	8500-8700
मध्य से अति 8280-8500 कोककारी	निर्बल से मध्य कोककारी	अति कोककारी	निर्बल से मध्य कोककारी	अकोककारी से निर्बल कोककारी	अकोककारी	अकोककारी
<u>ब</u> 4	बीठ	ब्री		्ब ब	एस-ए	Þ
उच्च वाषशील	मध्य वाष्पशील	मध्य वाष्पशील	निम्न वाष्पशील	निम्न बाषशील	सेमी एन्थ्रासाइट	ऐन्थ्रसाइट
					रेन्थ्रासाइट	

सारणी 9. अकोककारी कोयले की श्रेणी

क्र. सं.	वर्ग		श्रेणी विनिर्देश
1.	असम, आंध्र प्रदेश, मेघालय, अरुणाचल प्रदेश और नागालैंड के अकोककारी कोयले को छोडकर अन्य		उपयोगी ऊष्मामान (किलो/कैलोरी/ किलोग्राम)
	राज्यों के अकोककारी कोयले।	ए	6200 से अधिक
	, 7	बी	5600 से अधिक किंतु 6200 से कम
		सी	4940 से अधिक किंतु 5600 से कम
		डी	4200 से अधिक किंतु 4940 से कम
		र्	3360 से अधिक किंतु 4200 से कम
		एफ	2400 से अधिक किंतु 3360 से कम
		जी	1300 से अधिक किंतु 2400 से कम
2.	असम, आंध्र प्रदेश, मेघालय, अरुणाचल प्रदेश, और नागालैंड के अकोककारी कोयले।		श्रेणीकृत नहीं।

उपयोगी ताप मूल्य की गणना नमी और राख की मात्रा से निम्न प्रकार से की जाती है : 3पयोगी ताप मूल्य (UHV) =8900-138 (राख + नमी का प्रतिशत)

किलो/कैलोरी/प्रतिकिलो

भारत के औद्योगिक लागत एवं मूल्य विभाग (1983) ने समान श्रेणीकरण पद्धित का विस्तार सिंगरेनी एवं अन्य कोयलों के लिए भी करने की अनुशंसा की है।

19. कोयला निचय: भारतवर्ष में हमें प्रकृति से कोयले का विपुल भंडार मिला है। भारत के भू-वैज्ञानिक सर्वेक्षण विभाग के 1994 के प्राक्कलन के अनुसार 0.9 मीटर और उससे अधिक मोटाई वाले कोयला संस्तरों में 1200 मीटर की गहराई तक पाए जाने वाले कठोर कोयले का भंडार अनुमानतः 1968918.70 लाख टन है।

सारणी 10 (अ) भारत के विभिन्न राज्यों में कोयला निचय

(0.9 मीटर या इससे अधिक मोटाई वाले कोयला संस्तरों में 1.1.1994 की स्थिति) निचय (दस लाख टन में)

कोयला क्षेत्र का नाम	गहराई (मीटर में)	प्रमाणित	निर्दिष्ट	अनुमानित	योग
पश्चिमी बंगाल					
1. रानीगंज कोयला क्षेत्र					
(अ) मध्यम कोककारी	0-300	341.70	34.70	_	376.40
	300-600	52.40	8.30	2.00	62.70
	0-600	394.10	43.00	2.00	439.10
(ब) अर्घ कोककारी	0-300	98.64	15.97	_	114.61
	300-600	105.46	162.49	23.48	291.43
	600-1200	23.21	326.53	144.75	494.49
	0-1200	227.31	504.99	168.23	900.53
(स) अकोककारी	0-300	9007.23	2934.64	488.49	12430.36
संपूर्ण योग (अ + ब + स)	0-1200	11165.78	7729.47	3954.95	22850.20
2. बरजोरा कोयला क्षेत्र	0-300	114.27	-	-	114.27
3. डोमरा - पानागढ़ द्रोणी	300-600	_	354.50	_	354.50
200	600-1200	_	397.36	_	397.36
संपूर्ण योग	300-1200		751.86	_	751.86
4. देवचा द्रोणी	0-300	_	257.77	_	257.77
	300-600	_	1657.82	-	1657.82
	600-1200		795.03	-	795.03
सम्पूर्ण योग	0-1200	_	2710.62	_	2710.62

		1200 DE				
5. दार्जिलिंग कोयला क्षेत्र	0-300	_	-	15.00	15.00	
पश्चिम बंगाल का संपूर्ण योग	0-1200	11280-05	11191.95	3969.95	26441.95	
बिहार 6. झरिया कोयला क्षेत्र						
(अ) मूल कोककारी	0-600	3724.45	314.55	-	4039.00	
0 3 20	600-1200	512.00	749.00		1261.00	
	0-1200	4236.45	1063.55	_	5300.00	
(ब) मध्यम कोककारी	0-600	3983.57	83.43	_	4067.00	
55. 44	600-1200	242.00	1855.00	_	2097.00	
	0-1200	4225.57	1938.43	_	6164.00	
(स) अकोककारी	0-600	5405.27	696.73	_	6102.00	
	600-1200	496.00	1355.00	_	1851.00	
	0-1200	5901.27	2051.73	_	7953.00	
संपूर्ण योग (अ + ब + स)	0-1200	14363.29	5053.71	-	19417.00	
 पूर्व बोकारो कोयला क्षेत्र 						
(अ) मध्यम कोककारी	0-300	1747.14	1007.32	40-45	2794.91	
% 38	300-600	197.04	1158.75	40-46	1396.25	
	600-1200	254.26	1085.18	_	1339.44	
	0-1200	2198.44	3251.25	80-91	5530.60	
(ब) अकोककारी	0-300	47.97	56.81	-	104.78	
*	300-600	_	5.69	_	5.69	
	0-600	47.97	62.50	-	110.47	
संपूर्ण योग (अ + ब)	0-1200	2246.41	3313.75	80-91	5641.07	
8. पश्चिम बोकारो कोयला क्षेत्र						

		1	i l		
(अ) मध्यम कोककारी	0-300	2550.74	1426.60	28.60	4005.94
	300-600	287.42	106.76	5.82	400.00
	υ -600	2838.16	1533.36	34.42	4405.94
(ब) अकोककारी	0-300	159.02	23.64	_	182.66
	300-600	5.81	4.66	-	10.47
	0-600	164.83	28.30	_	193.13
संपूर्ण योग (अ + ब)	0-600	3002.99	1561.66	34.42	4599.07
12. औरंगा कोयला क्षेत्र	0-300	8.78	1428.57	40.08	1477.43
	300-600	-	734.26	393.15	1127.41
	600-1200	-	15.76).—:	15-76
संपूर्ण योग	0-1200	8.78	2178.59	433.23	2620.60
13. हुतार कोयला क्षेत्र	0-300	190-79	14.22	32.48	237.49
9843	300-600	_	12.33	_	12.33
संपूर्ण योग	0-600	190-79	26.55	32.48	249.82
14. डाल्टन गंज कोयला क्षेत्र	0-300	83.86	60.10		143.96
15. देवगढ़ कोयला क्षेत्र	0-300	326.24	73.60	·—	399.84
16. राजमहल कोयला क्षेत्र	0-300	2077.97	6003.48	587.01	8668.46
	300-600	_	1694.26	770.08	2464.34
संपूर्ण योग	0-600	2077.97	7697.74	1357.09	11132.80
संपूर्ण योग (बिहार में)	0-1200	29796.02	28632.14	6172.96	64601.12
मध्य प्रदेश					
17. जोहिला कोयला क्षेत्र	0-300	136.87	104.09	70.00	310.96
18. उमरिया कोयला क्षेत्र	0-300	57.52		_	57.52

19. पेंच-कनहन-तवा घाटी कोयला क्षेत्र					
CENTRAL STOR					
(अ) मध्यम से अर्ध	0-300	60-61	79.84	119.70	260.15
कोककारी	300-600	40-29	103.54	142.17	286.00
	0-600	100-90	183.38	261.87	546.15
(ब) अकोककारी	0-300	788.25	89.13	72.62	950.00
	300-600	210.84	165.82	122.40	499.06
	0-600	999.09	254.95	195.02	1449.06
संपूर्ण योग (अ + ब)	0-600	1099.99	438.33	456.89	1995.21
20. पाथाखेरा कोयला क्षेत्र	0-300	179.61	62.76	_	242.37
	300-600	_	_	123.00	123.00
संपूर्ण योग	0-600	179.61	62.76	123.00	65.37
21. गुरगुंडा कोयला क्षेत्र	0-300	_	47.39	_	47.39
22. मोहपानी कोयला क्षेत्र	0-300	7.83	-	-	7.83
23. सोहागपुर कोयला क्षेत्र					
(अ) मध्यम कोककारी	0-300	24.29	316.06	_	340.35
	300-600	_	744.04	37.46	781.50
	600-1200	_	9.33	4.14	13.47
	0-1200	24.29	1069.43	41.60	1135.32
(ब) अकोककारी	0-300	816.84	506.18	0.25	1323.27
	300-600	-	60.03	4.64	64.67
	0-600	816.84	566.21	4.89	1387.94
संपूर्ण योग (अ + ब)	0-1200	841.13	1635.64	46.49	2523.26
24. सिंगौली कोयला क्षेत्र	0-300	4157.91	1109.83	2152.39	7420.13
	300-600	-	290.58	1496.42	1787.00

संपूर्ण योग	0-600	4157.91	1400.41	3648.81	9207.13
25. सोनहट कोयला क्षेत्र					
(अ) अर्ध से कमजोर कोककारी	0-300	70.77	-	-	70.77
(ब) अकोककारी	0-300	59.30	95.21	_	154.41
संपूर्ण योग (अ + ब)	0-300	130.07	95.21	_	225.28
26. झिलीमिली कोयला क्षेत्र	0-300	211.68	55.42	-	267.10
27. चिरीमिरी कोयला क्षेत्र	0-300	320.33	10.83	31.00	362.16
28. विश्रामपुर कोयला क्षेत्र	0-300	461.09	135.07	-	596.16
29. लाखनपुर कोयला क्षेत्र	0-300	313.89	_	_	313.89
30. हसदो-आरंद कोयला क्षेत्र	0-300 300-600	411.42 -	2785.48 12.58	1106.94 4.36	4303.84 16.94
संपूर्ण योग	0-600	411.42	2798.06	1111.30	4320.78
31. सेन्दूरगढ़ कोयला क्षेत्र	0-300	96.97	182.24	-	279.21
32. कोरबा कोयला क्षेत्र	0-300	2138.26	4851.87	546.86	7536.99
	300-600	10.00	1672.15	588.78	2270.93
संपूर्ण योग	0-600	2148.26	6524.02	1135.64	9807.92
33. मांडरायगढ़ कोयला	0-300	101.19	6226.86	1744.14	8072.19
क्षेत्र	300-600	-	1013.00	428.83	1441.83
संपूर्ण योग	0-600	101.19	7239.86	2172.97	9514.02
34. तातापानी रामकोला	0-300	_	744.79	15-90	760.69
कोयला क्षेत्र	300-600	-	232.76	148.43	381.19

संपूर्ण योग	0-600		977.55	164.33	1141.88
500 33 00 00000	NI 1/100 C S C S C S C S C S C S C S C S C S C				
संपूर्ण योग (मध्य प्रदेश में)	0-600	10675.76	21706.88	8960.43	41343.07
महाराष्ट्र					
35. चांदा वर्धा घाटी	0-300	2154.63	470.85	428.89	3054.37
कोयला क्षेत्र	300-600	1.71	217.97	1143.16	1362.84
संपूर्ण योग	0-600	2156.34	688.82	1572.05	4417.21
36. काम्पटी कोयला क्षेत्र	0-300	771.44	178.08	100.00	1049.52
	300-600	35.50	67.20	220.00	322.70
संपूर्ण योग	0-600	806.94	245.28	320.00	1372.22
37. उमरेर कोयला क्षेत्र	0-300	85.10	_	_	85.10
38. बंदेर कोयला क्षेत्र	0-300	64.52	135.48	_	200.00
39. नंद कोयला क्षेत्र	0-300	42.51	7.49	-	50.00
40. मंकर धोकरा कोयला क्षेत्र	0-300	29.00	93.00	-	122.00
41. बोखारा कोयला क्षेत्र	0-300	10.00	_	20.00	30.00
संपूर्ण योग (महाराष्ट्र में)	0-600	3194.41	1170.07	1912.05	6276.53
उड़ीसा					
42. दूब नदी कोयला क्षेत्र	0-300	1754.39	7251.20	4002.63	13008.22
N-100	300-600	_	2981.60	5051.67	8033.27
संपूर्ण योग	0-600	1754.39	10232.80	9054.30	21041.49
43. तालचीर कोयला क्षेत्र	0-300	4907.05	10376.04	6826.52	22109.61
	300-600	-	1666.63	1672.27	3338.90
	600-1200	-	36.67	-	36.67

		(49)			
संपूर्ण योग	0-1200	4907.05	12079.34	8498.79	25485.18
संपूर्ण योग (उड़ीसा)	0-1200	6661.44	22312.14	17553.09	46526.67
आंध्र प्रदेश					
44. गोदावरी घाटी	0-300	4522.26	359.45	363.15	5244.86
कोयला क्षेत्र	300-600	1660.42	405.13	1810.14	3875.69
22 CONTRACTOR SANCE SANC	600-1200	-	151.79	1565.41	1717.20
संपूर्ण योग	0-1200	6182.68	916.37	3738.70	10837.75
संपूर्ण योग (आन्ध्र प्रदेश)	0-1200	6182.68	916.37	3738.70	10837.75
उत्तर पूर्वी क्षेत्र					
45. सिंगरीमरी कोयला क्षेत्र	0-300	-	279	_	2.79
46. माकूम कोयला क्षेत्र	0-300	80.55	-	_	80.55
10900	300-600	43.11	50-19	61-81	155.11
संपूर्ण योग	0-600	123.66	50-19	61.81	235.66
47. दिल्ली-जयपुर कोयला क्षेत्र	0-300	9.03	14-19	30.80	54.02
48. नामचिक कोयला क्षेत्र	0-300	31.23	1104	47.96	90-23
49. मिकिर पहाड़ी कोयला क्षेत्र	0-300	0.69	_	2.02	2.71
50. पश्चिमी दारंगिरी कोयला क्षेत्र	0-300	64.47	62.53	-	127.00
51. बालफकम पेन्डेनगुरु कोयला क्षेत्र	0-300	-	-	107.03	107.03
52. सिजू कोयला क्षेत्र	0-300	_	-	125.00	125.00

	9	81	0 1	6 8	ı
53. लैंग्रिन कोयला क्षेत्र	0-300	11.34	7.20	31.46	50.00
54. मावलांग-शेल्ला कोयला क्षेत्र	0-300	2.17	-	3.83	6.00
 खासी पहाड़ियों के छोटे कोयला क्षेत्र 	0-300	-	-	7.09	7.09
56. बोरजन कोयला क्षेत्र	0-300	3.43	1.35	5.22	10.00
57. झांजी-दिसाई घाटी कोयला क्षेत्र	0-300	-	_	2.08	2.08
58. तेन सांग कोयला क्षेत्र	0-300	_	_	1.26	1.26
59. तिरु-घाटी कोयला क्षेत्र	0-300	-	-	6.60	6.60
60. बापुंग कोयला क्षेत्र	0-300	11.01	_	22.65	33.66
 जयंती पहाड़ियों के छोटे कोयला क्षेत्र 	0-300		-	3.65	3.65
संपूर्ण योग (उत्तर पूर्वी क्षेत्र)	0-600	257.03	149.29	458.46	864.78
संपूर्ण योग (तृतीय कल्प कोयला क्षेत्र)	0-600	257.03	146.50	458.46	861.99
संपूर्ण योग (गोंडवाना कोयला क्षेत्र)	0-1200	67790.36	85932.34	42327.18	196029.88
संपूर्ण योग (गोंडवाना तथा तृतीय कल्प कोयला क्षेत्र)	0-1200	68047.39	86078.84	42765.64	196891.87

संदर्भ : भारतीय भू-वैज्ञानिक सर्वेक्षण, कोयला स्कंघ, जनवरी, 1994, खंड 14, सं. 1 पृष्ठ 3-8।

	ĺ	0	•
•			2
	-		4
٠		2	
	E	Į	;

भारत के गोंडवाना तथा तृतीय कल्प के कोयला क्षेत्र और उपलब्ध कोयले की श्रेणी	राज्य कोयला क्षेत्र क्षेत्रफल (वर्ग समुदाय मोटाई कोयला मोटाई का विस्तार उपलब्ध कोयले का प्रकार किलोमीटर) (मीटर में) संस्तर की (मीटर) संख्या	2. 3. 4. 5. 6. 7. 8.	(अ) गोंडवाना कोयला क्षेत्र I. दामोदर घाटी	ति बंगाल दार्जिलिंग 129 निम्न गोंडवाना कुछ पतले 1.8 तक अंशतः ऐन्यासाइट (अति (लगभग 500) संस्तर विश्वुब्य क्षेत्र)	ा चंगाल बरजोरा 33 बराकर (500) 4 1-3 अकोककारी (निम्न)	1 वंगाल रानीगंज 10 2-5 (अधिकतम अर्घ से अकोककारी (अर्घ कोककारी (अर्घ कोककारी कोयला पश्चिमी 20) कोककारी कोयला पश्चिमी कोककारी कोयला पश्चिमी	बराकर (640) 7 3-10 (अधिकतम मध्यम कोककारी, अर्थकोककारी तथा अकोककारी, अर्थकोककारी तथा अकोककारी (ज्यादातर कोयला मध्यम कोककारी है, जबकि उत्तरपूर्व में कोककारी है, अर्थकोककारी या
es ≖ color	राज्य	2.		पश्चिमी बंगाल दार्जिलिंग	पश्चिम बंगाल बरजोरा	पश्चिम बंगाल रानीगंज	
	Н Э	1.		1.	2.	.; P	

		(52)		
मध्यम कोककारी	3-9 (अधिकतम संस्तर IX तथा ऊपर प्राइम कोककारी, IX से नीचे मध्यम या अकोककारी। पूर्वी भाग में कोयला संस्तर I भी प्राइम कोककारी है।	, मध्यम कोककारी (करगूली, कथारा तथा उचितडीह समूह के संस्तरों में न्यून भस्म कोयला है जबकि अन्य संस्तरों में उच्च भस्म कोयला है।)	मध्यम कोककारी	अर्ध-तथा मध्यम कोककारी (IV से IX तक के कोयला संस्तरों में मध्यम कोककारी कोयला है।)	2-5 (अधिकतम मध्यम तथा अर्धकोककारी 22) (मुख्य द्रोणी के VII टॉप, VII बॉटम, तथा VII A कोयला संस्तरों के कोयले मध्यम कोककारी है।)
1.5-3	3-9 (अधिकतम 30)	1.5-4 (करगलो, म वेरमो तथा कारो क उच्च एवं निम्म स मुख्य संस्तरों की ज मोटाई (10 से 30	0.5-2	4-10	2-5 (अधिकतम 22)
6	18	22	4	13	12
रानीगंज (560)	बराकर 610	बराकर (825)	करहरवारी (90)	बराकर (600)	बराकर (1260)
450		208		259	86
झरिया		पूर्वी बोकारो		पश्चिमी बोकारो	रामगढ़
बिहार		बिहार		बिहार	बिहार

				(3	3)							
3-10 (अधिकतम अकोककारी (निम्न) तथा उच्च 40) उत्तर पूर्व क्षेत्र में सीमित है।	अकोककारी (उच्च कोटि)	अकोककारी (अधिकतर उच्चकोटि)	प्राइम तथा मध्यम कोककारी		अकोककारी (निम्न)	अकोककारी (उच्चकोटि)	अकोककारी (उच्चकोटि)	अकोककारी (उच्चकोटि)				
3-10 (अधिकतम 40)	1-8	2-10 (अरगदा संस्तर की मोटाई 20-40 मीटर तक है)	2-4		1-35	2-9	2-10	0.2-4	1.2-2.7	1-2.2	3-6	1-3
112	н	9	7		6	14	9	20	6	5	3	2 से 3
(05)	(100)	<u> </u>	(हरवारी									
बराकर (450)	करहरवारी (100)	बराकर (790)	बराकर/करहरवारी (305)	इल समूह	बराकर	बराकर	बराकर	बराकर	बराकर	बराकर	बराकर	बराकर
1230 बराकर (करहरवारी	बराकर (79	बराकर/क (305)	II. देवघर राजमहल समूह	बराकर	बराकर	बराकर	बराकर	बराकर	बराकर	बराकर	बराकर
	करहरवारी	दक्षिण कर्णपुरा	गिरोडीह बराकर/क (305)	II. देवधर राजमहल समूह	हुरा	चुपरिभता बराकर	पछवारा	महुआगढ़ी	बाह्मणी बराकर	<u>बराकर</u>	सहारजुरी बराकर	कुंदित कुरैया
1230	करहरवारी	8		II. देवघर राजमहल समूह		·						

							(54	1)				
	अकोककारी (निम्न)		अकोककारी (निम्न)	अधिकतर कार्बनी शेल	अकोककारी (II, III, तथा IV कोयला संस्तर उच्च कोटि के हैं तथा अन्य सभी निम्न कोटि के हैं ।)	अकोककारी (उच्च कोटि)	अकोककारी (निम्न)	अकोककारी (उच्चकोटि)	अकोककारी (उच्चकोटि) (अर्ध तथा दुर्बल कोककारी कोयले भी उपलब्ध)		अर्घकोककारी तथा अकोककारी (निम्म) (अर्घ कोककारी कोयला संस्तर में ही सीमित)	अकोककारी (उच्चकोटि)
	1.2-2.4		2 मीटर तक	4-10	0.5-3	1.5-4 (अधिकतम 10)	1-4	1-4.5	4-7.5		3-4	1.5-9
	3		5	3	9	7	4	3 से 5	5 से 6		9	6
	बराकर		बराकर	बराकर (120)	करहरवारी (100)	बराकर (120)	बराकर (275)	बराकर (182)	बराकर (300)		बराकर (950)	बराकर (900)
		III. कोयल घाटी							1	IV सोन घाटी		
3	चोप इटखोरी		औरंग	हुटार		डाल्टनगंज	रामकोला तातापानी	विसरामपुर	झिलीमिली		सोनहाट	सोहागपुर
	बिहार		बिहार	बिहार		बिहार	मध्य प्रदेश	मध्य प्रदेश	मध्य प्रदेश		मध्य प्रदेश	मध्य प्रदेश
	19.		20.	21.		22.	23.	24.	25.		28.	27.

	अकोककारी (उच्चकोटि) (हाल ही में बिजुरी के उत्तरी क्षेत्र में कोककारी कोयला खोजा गया है।)	अकोककारी (उच्चकोटि)	अकोककारी (निम्न)	अकोककारी (निम्न)	अकोककारी (निम्न) अधिकतर कार्बनी शैल		अकोककारी (निम्न)		मध्यम कोककारी (मध्यम कोककारी कोयला क्षेत्र के पश्चिमी भाग में संस्तर III में सीमित हैं) तथा अकोककारी (उच्च एवं निम)
	अकोकव हो में हि कोककार्र है।)	अकोकव	अकोकव	अकोकव			अकोकव	8	मध्यम कोकका पश्चिमी सीमित (उच्च ए
	1-2.5	2-6	1.2-4	1.5-2.5	130-135 (ब्रिगुरदा टॉप)	10-15 (झिंगुरदा बॉटम)	15-20		1-6
	14	2	9	3	2		2 पुरेवा संस्तर पूर्व में दो भागों में विभा-	जित है	3-5
	बराकर (400)	बराकर (175)	बराकर (170)	बराकर	रानीगंज (400)		बराकर (750)	V सतपुड़ा क्षेत्र	बराकर (250)
	सागराखंड	जोहिल्ला	उमरिया	कोरार	सिंगीली				पेंच कनहान
	मध्य प्रदेश	मध्य प्रदेश	मध्य प्रदेश	मध्य प्रदेश	मध्य प्रदेश				मध्य प्रदेश
-	28.	29.	30.	31.	32.				33.

								56)			
अकोककारी	अकोककारी	अकोककारी	अकोककारी	अकोककारी	अकोककारी	अकोककारी	ऊपरी बराकर के सात संस्तरों में उच्च कोटि का अकोककारी	मीटर तक है तथा कोयला है तथा अन्य में निम्न ऊपरी संस्तरों की कोटि का अकोककारी कोयला मोटाई 20 से 60 है। मीटर तक है।	अकोककारी (निम्न एवं उच्चकोटि)	अकोककारी	अकोककारी (निम्म बराकर के दो संस्तर उच्च कोटि के हैं जबकि ऊपरी बराकर के अन्य दो संस्तर निम्म कोटि के हैं।
1.5-3	1.5-4	1.2-2	0.3-1.8	0.4 - 0.6	1.5-8	1.5-15	निचले संस्तरों की मोटाई 1 से 4	मीटर तक है तथा ऊपरी संस्तरों की मोटाई 20 से 60 मीटर तक है।	1.5-10	0.3	1.7
ю	3	3	3	2 से 3	4	12	21		3 से 4	-	4
बराकर	बराकर	बराकर	बराकर	बराकर	बराकर/करहरवारी	बराकर	बराकर (700)		बराकर	बराकर	बराकर (350)
	R										
तावा घाटी	पाथाखेरा	दुल्हारा	गुरगुंडा	सोनादा	मोहपानी	मॉड-रायगढ्	कारबा		हसदो आरंद	बनसर	लखनपुर
मध्य प्रदेश	मध्य प्रदेश	मध्य प्रदेश		मध्य प्रदेश	मध्य प्रदेश	मध्य प्रदेश					
%	35.	36.	37.	38.	39.	9	41.		42.	43.	4.

							(57)			
	अकोककारी (उच्चकोटि)	अकोककारी	अकोककारी (उच्चकोटि)	अकोककारी (निम्न)	अकोककारी (निम्न)	अकोककारी (उच्चकोटि)		अकोककारी (निम्न)	अकोककारी (उच्चकोटि) (दक्षिण में निम्नकोटि के संस्तर)		अकोककारी (निम्न)
	6.0	1.2-3.5	1-8	0.3-1.5	10-40	3-12		10-40	3-10		17-20
	2	9	4 से 6	2	∞	2 (पश्चिम	स तान भागों में निश्वात्तिन)	4	н		(पश्चिम में दो संस्तरों में तथा दक्षिण में कई खण्डों में
VI. महानदी घाटी	बराकर	बराकर	बराकर	बराकर	बराकर (500)	करहरवारी (270)		बराकर (600)	करहरवारी (125)	VII. वर्धा गोदावरी घाटी	बराकर (400)
										VII	
	पंचभैनी	मेंदूरगढ़	चिरीमिरी	कोरियागढ़	तालचीर			दूब नदी			वर्षा घाटी
	मध्य प्रदेश		मध्य प्रदेश		उड़ीसा			उड़ीसा			महारा ष्ट्र
•	45.		47.		49.			50.			51.

						(58	3)			
अकोककारी (निम्न)	अकोककारी (निम्न)	अकोककारी (निम्न)	अकोककारी (निम्न)		 (अधिकतम अकोककारी (अधिक गंधक 16) तथा कोकन प्रवृत्ति) 	कोककारी (अधिक गंधक तथा उच्च कोकन प्रवृत्ति)	अकोककारी से दुर्बल कोककारी	अकोककारी (अधिक गंधक)	अकोककारी (अधिक गंधक)	कोककारी (उच्च आर्द्रता)
2-7	0.8-3	5-20	3-8		1-5 (अधिकतम 16)	1.5 - 6 (निम्नतम संस्तर की मोटाई लगभग 18 मीटर)	1.2-3 (निम्म संस्तर की मोटाई 10-12 मीटर)	0.5-2	0.5-2.5	0.5-2.5
2	∞	5	9-4	K)	2-8	8	5-7	2-3	4 (केवल एक खननीय)	, ∞
बराकर (270)	बराकर (300)	बराकर (200)	बराकर (300)	तृतीय कत्प के कोयला क्षेत्र	टिकाक पर्वत (500)	टिकाक पर्वत (500)	टिकाक पर्वत (600)	सिलहट चूना पत्थर	तुस (250)	कुरा (250)
W				(a) (a)						
मॉटी	बाँदर	新	गोदाबरी		नामचिक नामफुक	भाकुप	दिल्ली-जयपुर	मिकिर पहाड़ियाँ	पश्चिमी बारनगरी	वालफकरम पेंदेनगुरु तथा उसका परिचमी एवं उत्तरी विस्तरण
महाराष्ट्र	महाराष्ट्र	महाराष्ट्र	आन्ध्र प्रदेश	-	अरुणाचल प्रदेश	असम	असम	असम	मेघालय	मेघालय
52.	53.	54.	55.		ij	7.	i,	4	2	9

अकोककारी	अकोककारी (अधिक गंधक)	कोककारी (अधिक गंधक)	कोककारी (अधिक गंधक)	अकोककारी (कम भस्म, अधिक गंधक)	अकोककारी
0.5-2	0.5-2	0.7-1.5	0.5-1.5	2-7	1.5-3
7	9	1 (2/3 खंडों में विभाजित)	1.5	1.5	2-5
तुस (250)	तुरा (250)	लाकाडोंग बालुकाश्म (48)	लाकाडोंग बालुकाश्म	टिकाक पर्वत (640)	टिकाक पर्वत
सिजू तथा उसको पूर्वी विस्तरण	लॉगरिन	भॉलोग शेल्ला	खासी एवं जयंतिया पहाडियों के छोटे कोयला क्षेत्र	वोरजान	नागालैंड के छोटे कोयला क्षेत्र
मेघालय	मेघालय	मेघालय	मेघालय	नागालैंड	नागालैंड
7.	∞.	9.	10.	11	12.

संदर्भ कोयले की गवेषणा: रघुनंदन मिश्र एवं वीरेंद्र कुमार सिंह सेंट्ल माइन प्लानिंग एण्ड डिजाइन इन्स्टीट्यूट लि., रांची, 1990 ।

सारिणी 10 (स)

भारत में राज्यवार कोयला निचय (10 लाख टन में)

(01-01-1996 की स्थिति)

क्र. सं.	राज्य/प्रतिशत	गहराई (मीटर में)	प्रमाणित	निर्दिष्ट निचय	अनुमानित	योग
20000	गोंडवाना कोयला	, ,			()	L
			0505.05	2477 40	507.50	12.120.00
1.	पश्चिम बंगाल	0-300	9725.25	3176.18		
	(13.54%)	300-600	1620.78	5689.64	2129.87	9440.29
		600-1200	36.43	2793.97	1648.51	4478.91
		0-1200	11382.46	11659.79	4315.91	27358.16
2.	बिहार	0-300	15537.10	14231.32	2187.95	31956.3711
	(32.29%)	0-600	13114.14	1093.86	0.00	4208.00
		300-600	816.67	7643.58	3176.6	11637.2177
		600-1200	1504.26	5383.62	515.91	403.79
		0-1200	30972.17	28358.38	5880.82	65205.37
3.	उत्तर प्रदेश	0-300	662.21	400.00	0.00	1062.21
	(32.29%)					
4.	मध्य प्रदेश	0-300	9836.40	17472.02	5854.13	33162.55
	(20.34%)	300-600	261.13	4496.90	3124.57	7882.60
		600-1200	0.00	10.30	4.14	14.44
		0-1200	10097.53	21979.22	8982.84	41059.59
5.	महाराष्ट्र	0-300	3487.32	1025.62	518.89	5031.83
	(3.28%)	300-600	37.21	422.61	1144.75	1604.57
		0-600	3524.53	1448.23	1663.64	6636.40
6.	आंध्र प्रदेश	0-300	4670.29	583.92	122.20	5276.41
	(6.44%)	300-600	1912.18	1972.93	831.74	4716.85
		600-1200	0.00	945.51	1981.73	2927.24
		0-1200	6582.47	3503.36	2935.67	13020.50

Ŷ.					
7. उड़ीसा	0-300	6869.74	17589.95	10829.15	35288.84
(23.14%)	300-600	0.00	4672.21	6723.94	11396.15
	600-1200	0.00	36.67	0.00	36.67
l,	0-1200	6869.74	22298.83	17553.09	46721.66
+ +8. असम	0-300	0.00	2.79	0.00	2.79
+ + ब. तृतीय कल्प	का कोयला				i
1. असम	0-300	89.81	14.19	32.82	145.82
	300-600	129.56	9.85	32.19	171.60
	0-600	228.37	24.04	65.01	317.41
2. अरुणाचल	0-300	31.23	11.04	47.96	90.23
3. मेघालय	0-300	88-99	69.73	300.71	459.43
4. नागालैंड	0-300	3.43	1.35	15.16	19.94
+ + उत्तर पूर्व क्षेत्र ।	(0.45%)				
संपूर्ण योग	0-300	15010.77	54578.11	20446.50	126035.38
	0-600	13114.14	1093.86	0.00	14208.00
	300-600	4777.53	24907.72	17164.02	46849.27
	600-1200	1540.69	9170.07	4150.29	14861.05
	0-1200	70443.13	89749.76	41760.81	201953.70

^{*}केवल झरिया कोयला क्षेत्र के 0-300 और 300-600 मीटर गहराई तक का अलग-अलग निचय उपलब्ध नहीं है।

संदर्भ—भारतीय भू-वैज्ञानिक सर्वेक्षण,कोयला स्कंध खंड 16, सं.1 पृष्ठ 4-5, 1996।

सारणी 10 (द) भारत के कोयला निचय में लगातार कृद्धि (1993-1996) (10 लाख टन में)

	राज्य/क्षेत्र			वर्ष				
		(मीटर में)	1993	1994	1995	1996		
1.	पश्चिमी बंगाल	0-1200	25123.11	26441.95	26718.44	27358.16		
2.	बिहार	0-1200	64371.75	64601.12	64974.34	65205.37		
3.	उत्तर प्रदेश	0-300	1062.21	1062.21	1062.21	1062.21		
4.	मध्य प्रदेश	0-1200	39022.56	40280.86	40766.69	41059.59		
5.	महाराष्ट्र	0-600	6276.53	6276.53	6602.47	6636.40		
6.	आंध्र प्रदेश	0-1200	10837.75	10837.75	12466.38	13020.50		
7.	उड़ीसा	0-1200	46218.44	46526.67	46550.65	46721.66		
8.	उत्तर पूर्वी क्षेत्र	0-300	864.78	864.78	889.81	889.80		
I	संपूर्ण योग (तृतीय कल्प कोयला क्षेत्र)	0-600	861.99	861.99	887.02	887.01		
II	संपूर्ण योग (गोंडवाना कोयला क्षेत्र)	0-1200	192915.14	196029,88	199141.97	201066.60		
Ш	संपूर्ण भारत कोयला क्षेः	0-1200	193777.13	196891.87	200028.99	201953.70		
(अ)	प्रमाणित	0-1200	64852.60	68047.39	68597.60	70443.13		
(ৰ)	निर्दिष्ट	0-1200	84913.10	86078.84	89754.00	89749.76		
(स)	अनुमानित	0-1200	44011.43	42765.64	41677.39	41760.81		
IV	पूर्वानुमानित	700-1700	63000.00	गुज	ारात-कैम्बे बेर्ा	सेन 		

इसमें मूल कोककारी कोयला का भंडार 5,30 लाख टन है। सारणी 10 (अ, ब) में प्रत्येक प्रान्त में पाए जाने वाले कोयले का वितरण एवं दिया गया है और साथ ही देश में कोयले के संपूर्ण भंडार का प्रतिशत भी चित्र 14 में दर्शाया गया है।

इसके अतिरिक्त लिग्नाइट का भंडार 20250 लाख टन है।

20. कोयला खनन की विधियाँ : कोयले की खानों के दो प्रकार हैं—"विवृत खान" और "भूमिगत खान"। जब कोयला संस्तर पृथ्वी की सतह पर या सवह के निकट होते हैं तो कोयला निकालने के लिए जमीन के नीचे गहराई में जाने की आवश्यकता नहीं पड़ती है। यदि कोयला संस्तर धरातल के निकट पाया जाता है तो उसके ऊपर पाए जाने वाले शैलों अथवा अधिभार को हटाकर कोयले की खुदाई की जा सकती है और इस प्रकार की खदान को "विवृत खान" कहते हैं। कोयला प्राप्त करने का कार्य सस्ता या मँहगा होना संस्तर की मोटाई और उसके ऊपर फैले हुए अधिभार के अनुपात पर निर्भर करता है। जब कोयले और अधिभार का अनुपात 1:4 या 1:5 होता है तब विकृत खनन पद्धित व्यावसायिक तौर पर संभव, सुविधाजनक और लाभप्रद होती है। भूमिगत खनन से विवृत खनन बहुत अधिक लाभकारी होता है।

भूमिगत खनन की गहराई 610 मीटर तक हो सकती है जो भारत में दुर्लभ है। आमतौर पर हमारे देश में भूमिगत खदानें 305 मीटर की गहराई तक ही हैं। भूमिगत खनन के लिए कोयला संस्तर के क्षेत्र में उपयुक्त स्थान पर 15 मीटर की दूरी पर 4 मीटर से लेकर 7 मीटर के व्यास के दो कुएँ खोदे जाते हैं जिन्हें कूपक या गर्त कहा जाता है। कूपकों की दीवारों को सीमेन्ट से बाँध दिया जाता है तािक आसापास की चट्टानें इसमें खिसक कर न गिर पड़ें। कूपक की तिला में कोयला संस्तर के विस्तार की दिशा में उसके समानान्तर या उसको बेधती हुई सुरंगें जिन्हें गैलरी कहा जाता है, खोदी जाती हैं।

कोयला संस्तर के झुकाव की ओर खोदी गई गैलरी को नित गैलरी कहा जाता है और जब ये गैलरियाँ संस्तर के विस्तार के समानान्तर खोदी जाती हैं तब इन्हें क्षैतिज गैलरी कहा जाता है। नित गैलरी का उपयोग कोयले की दुलाई के लिए अथवा खनिकों के चलन फिरने के लिए मुख्य मार्ग के रूप में किया जाता है। अतः उसे मुख्य गैलरी कहा जाता है।

भारतवर्ष के कोयला खदानों में व्यापक स्तर पर बोर्ड एवं पिलर विधि से कार्य किया जाता है। इसमें एक कोयला संस्तर को सुरंगों एवं क्रॉस सुरंगों को बनाकर कई खंडों में बाँट दिया जाता है। संस्तर की गहराई के अनुसार इन खंडों के आकार 13 मीटर × 13 मीटर से लेकर 39 मीटर × 39 मीटर तक होते हैं और इनकी ऊँचाई कोयला संस्तर की ऊँचाई (3 मीटर से अधिक नहीं) तक होती है। गहराई जितनी अधिक होगी, खंड का आकार

भी उतना ही बडा होगा। इन कोयला खंडों को कोयला स्तंभ कहा जाता है। खनन कार्य की प्रथम अवस्था में प्रायः 30% कोयला निकाल लिया जाता है और 70% कोयला स्तंभों में शेष रह जाता है। इस स्तंभों से कोयले का निकाला जाना कोयला खनन की कार्य की दूसरी अवस्था है जिसे "डिपिलरिंग अवस्था" कहा जाता है। कोयला स्तंभों से कोयला निकाल लिए जाने पर उसका स्थान रिक्त हो जाता है और कोयला संस्तर के ऊपर के शैलों का आधार हट जाने के कारण गिरने की संभावना प्रबल हो जाती है। इसलिए इन शैलों को आधार देने हेतु जगह-जगह समान दूरी पर कोयले के स्तंभ छोड़ दिए जाते हैं और इस प्रकार खदान में 40% से 50% तक कोयला रह जाता है। कभी-कभी यदि कोयला संस्तर के ऊपर के शैल हर प्रकार से मजूबत नहीं होते तब उस स्थिति में संस्तर की पूरी मोटाई में पाए जाने वाले कोयले को नहीं निकाला जाता बल्कि ऊपर में एक स्तर छत को आधार देने के लिए छोड़ दिया जाता है और लकड़ी के कंदों या खुटों को कोयला-स्तंभों की जगह लगाया जाता है। आजकल कोयला निकाल लिए जाने के बाद रिक्त स्थान में बालू भर दिया जाता है और इस प्रक्रिया को "बालू भरन" कहा जाता है। यह विधि बहुत ही उपयुक्त है क्योंकि इससे कोयले की अधिकतम मात्रा का खनन संभव होता है और संस्तर से 90% से 95% तक कोयला निकाला जा सकता है। साथ ही कोयला संस्तर के ऊपर के शैलों के गिरने अथवा धंसने तथा खनन के समय आने वाली विपत्तियों के अवसर को कम किया जा सकता है।

21. कोयले का उत्पादन : विश्व के प्रमुख कोयला उत्पादक देशों में चीन, उत्तरी अमेरिका, रूस और पौलेंड के बाद भारत का पाँचवा स्थान है और विश्व के कोयला उत्पादन में इसका अंशदान लगभग 6% है। पिछले 28 वर्षों में कोयला तथा लिग्नाइट के उत्पादन में उल्लेखनीय वृद्धि हुई है। (सारणी 11)।

सारिणी 11. भारत में कोयले (लिग्नाइट सहित) का वार्षिक उत्पादन (दस लाख टन)

वर्ष	उत्पादन	वर्ष	उत्पादन
1868	0.05	1980-81	119-11
1900	0.61	1981-82	131.24
1930	23.00	1982-83	137.50
1946	26.00	1983-84	145.53
1950	32.00	1984-85	154.80
1960	52.00	1985-86	162.30
1970-71	76.33	1986-87	172.90
1971-72	76.14	1987-88	188.30
1972-73	80.11	1988-89	202.70
1973-74	81.47	1989-90	213.30
1974-75	91.35	1990-91	225.70
1975-76	102.71	1991-92	245.30
1976-77	105-05	1992-93	255.10
1977-78	104.57	1993-94	266.70
1978-79	105.24	1994-95	277.08
1979-80	107.04	1995-96	295.57

सारिणी 12.

भारत के विभिन्न राज्यों में कोयले का वार्षिक उत्पादन (दस लाख टन)

	राज्य	1989- 90	1990- 91	1991- 92	1992- 93	1993- 94	1994- 95	1995- 96	
1.	आंध्र प्रदेश	17.80	17.91	20.59	22.51	25.28	25.65	26.77	9.79
2.	असम	0.84	0.68	0.95	1.10	1.20	1.19	0.82	0.30
3.	बिहार	66.58	67.30	69.16	71.14	73.29	73.33	74.57	27.29
4.	जम्मू एवं काश्मीर	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.007
5.	मध्य प्रदेश	62.30	65.22	69.40	70.65	73.86	74.86	79.76	29.19
6.	महाराष्ट्र	16.34	16.85	18.88	19.68	20.45	21.07	22.82	8.36
7.	मेघालय	2.44	2.24	3.06	3.49	2.54	3.27	3.25	1.18
8.	उड़ीसा	13.25	16.21	20.71	23.12	24.30	27.33	32.70	11.97
9.	उत्तर प्रदेश	6.17	10.46	11.49	12.17	12.14	13.82	14.60	5.35
10.	पश्चिम बंगाल	17.61	17.17	18.15	18.11	16.61	17.24	17.92	6.56

सारिणी 13. विक्रय के लिए कोयले के विभिन्न आकार

खनकों के नाम	आकार सीमा (भारतीय मानक चालनी) (मिलीमीटर)	खदान के बाहर अधिकतम सहयभार प्रतिशत (से अधिक) (से कम)		मानक नाम-पद्धति	
*खदान से निकाला कोयला	500.00	15	-	अचाला (अन्-स्क्रीन्ड)	
वाष्प कोयला या गोल कोयला	250.25	10	15	बड़ा कोयला	
रोड़ी या अलगाया नट कोयला	50-25	10	15	मध्यम कोयला	
लोहारखाना या नट कोयला	25-12.5	10	15	छोटा कोयला	
चूर्णित या असम चूर्णित कोयला	50-0	10	25+	चूर्णित कोयला (50)	
चूर्णित या महीन चूर्णित कोयला	25-0	10	30+	चूर्णित कोयला (25)	
धूल कोयला	12.5-0	10	70+	चूर्णित कोयला (12.5)	

^{*} सामान्यतः जब कोयले का खदान से अधिक उत्पादन होता है तब कोयले के आकार की ऊपरी सीमा निर्धारित नहीं की जाती।

⁺ कोयला जो 3.35 मिलीमीटर भारतीय मानक चालनी में से चला जाता है।

मुख्यतः अकोककारी कोयला और लिग्नाइट का उत्पादन उत्तरोत्तर बढ़ा है और भविष्य में भी इसके उत्पादन में अच्छी वृद्धि की संभावनाएँ हैं जिसके लिये भारतीय कोयला प्राधिकरण भरपूर प्रयास कर रहा है। हमारे देश के प्रमुख कोयला उत्पादक राज्य बिहार, मध्य प्रदेश, उड़ीसा, और आंध्र प्रदेश हैं। पिछले 7 वर्षों में कोयले का राज्यवार उत्पादन सारणी 12 में दिया हुआ है।

22. कोयले की तैयारी : उपभोक्ताओं को कोयले की आपूर्ति के पहले कई ढंग से इसका शोधन करके तैयार किया जाता है। उपयोग से पहले की यह प्रक्रिया कोयले की तैयारी के नाम से जानी जाती है। सीधे खदान से निकले हुए कोयले का उपयोग ईंधन के रूप में हम अपने घरों में नहीं करते बल्कि कोयले को आमतौर पर एक मधुमक्खी के छत्ते के आकार में इकट्ठा करके उसे तब तक जलाते हैं जब तक कि धुएँ का अधिकांश भाग निकल नहीं जाता है। फिर पानी छिड़ककर जलते हुए अंगारों को बुझाया जाता है। इस प्रकार आंशिक रूप से जला हुआ कोयला घरों में प्रयोग किया जाता है।

अनेक प्रकार के उद्योगों में आवश्यकतानुसार भिन्न-भिन्न आकार-प्रकार के कोयलों को उपयोग होता है। उद्योगों के इन विनिर्देशों के आधार पर कोयले का संदलन करके विभिन्न आकार की छन्नियों से छानकर इन्हें अलग-अलग समूहों में वर्गीकृत कर दिया जाता है। प्रत्येक प्रकार के कोयले का अलग-अलग नाम होता है जैसा कि सारणी 13 में दिया हुआ है:

कोयले को जलाने पर अंतिम उत्पादन राख होती है क्योंकि कोयले में निहित खनिज पदार्थ या गर्द (शैल या कार्बनीकृत शैल को गर्द में शामिल किया जाता है) ताप से जल जाता है। वास्तव में गर्द तथा खनिज पदार्थ कोयले के अवांछित घटक हैं जो कोयले को अनावश्यक रूप से भारी बना देते हैं और उपयोग के बाद अवशेष राख को हटाना उपभोक्ताओं के लिए एक समस्या हो जाती है। यही कारण है कि अधिकांश उपभोक्ता राख की कम मात्रा वाले कोयले का उपयोग करना पसंद करते हैं।

कोयले में राख की मात्रा को कम करने के लिए कोयले की धुलाई की जाती है जिससे कि राख बनाने वाले खनिजों, पदार्थों एवं गर्द की मात्रा को कम से कम किया जा सके। धुलाई द्वारा कोयले को साफ करने में विशिष्ट गुरुत्व अलगाव के सिद्धांत का प्रयोग किया जाता है। कोयले को एक द्रव (पानी, बालू मुक्त सिलिका, आदि का घोल) में, जिसका विशिष्ट गुरुत्व लगभग 1.5 है, डालकर अच्छी तरह विलोड़ित किया जाता है। कुछ समय के पश्चात् विलोड़न रोक दिया जाता है और इस मिश्रण को स्थिर होने दिया जाता है। थोड़ी देर में साफ कोयला ऊपर तैरने लगता है और खनिज पदार्थ, गर्द तथा शैलों के कण तह में बैठ जाते हैं। इसके बाद साफ कोयले को छान लिया जाता है और इसे पानी से अच्छी तरह धुलाई

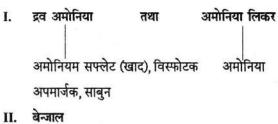
करके सुखाया जाता है। जहाँ पर यह सब कार्य होता है उसे वाशरी कहा जाता है। कोयले की धुलाई का सबसे बड़ा लाभ यह है कि न सिर्फ कोयले से राख की मात्रा को घटाया जाता है बल्कि उपभोक्ता को आपूर्ति किए जाने वाले कोयले की गुणवत्ता पर भी नियंत्रण रखा जा सकता है।

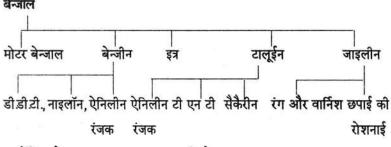
कोल इंडिया लिमिटेड द्वारा संचालित 16 कोयला वाशरियों, जिनमें प्रतिवर्ष 28.260 लाख टन कोयले की धुलाई की क्षमता है, में से केवल एक वाशरी में अकोककारी कोयले की धुलाई होती है। अन्य सभी वाशरियाँ या तो मूल कोककारी अथवा मध्यम कोककारी कोयले की धुलाई करती हैं। चूर्णित कोयले को भिन्न-भिन्न आकृतियों (सामान्यतः अंडाकार) और आकारों में दबाकर गोले बनाए जाते हैं। इनको बनाने में कभी-कभी बंधनकारी द्रवों अथवा पदार्थों का भी प्रयोग किया जाता है। इस प्रकार बनाए गए कोयले के गोलों को जलाने पर बहुत कम धुआँ निकलता है।

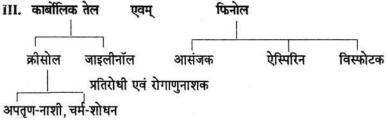
23. कोयले का उपयोग: कोयले का उपयोग मुख्यतः तापीय ऊर्जा में उत्पादन में होता है। जब कोयला जलाया जाता है तो कोयले का प्रमुख घटक कार्बन हवा में उपस्थित ऑक्सीजन के साथ मिलकर जलने लगता है और ऊष्मा उत्पन्न होती है जिसका उपयोग विभिन्न कार्यों में किया जाता है। घर में भोजन पकाने से लेकर कमरों को गर्म करने सीमेंट या चूना बनाने, स्टीमर तथा रेल इंजनों को चलाने अथवा विभिन्न कारखानों में मशीनों को चलाने के लिए कोयले की आवश्यकता होती है।

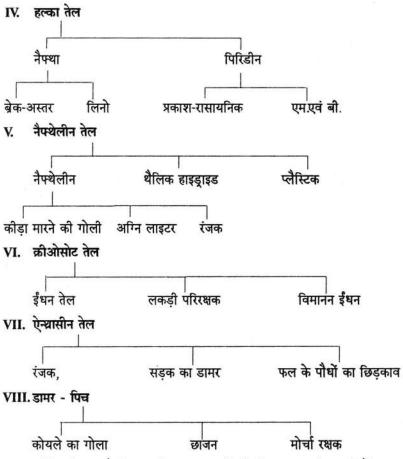
कोयले को रसायनों का भंडार कहा जाता है। जब हवा की अनुपस्थित में कोयले को तप्त किया जाता है तब इसमें से धुआँ या गैस बाहर निकलती है और जब इस गैस को किसी निथार टंकी में ठंडा होने दिया जाता है तब टंकी की पेंदी में काले तरल पदार्थ की रचना होती है। जो गैस ठंडा होने से बच जाती है उसे कोयला गैस कहा जाता है। इस गैस को बड़े-बड़े सिलिंडरों में पानी के ऊपर इकट्ठा किया जाता है और इसका उपयोग तापन के लिए किया जाता है।

निथार टंकी में एकत्रित तरल पदार्थ दो परतों में अलग हो जाता है। ऊपरी परत में मुख्यतः द्रव अमोनिया या अमोनिया लवण होता है और निचली सतह में सामान्यतः कोलतार अथवा अलकतरा रहता है। ऊपरी परत के द्रव को बाहर निकाल कर दूसरे अमोनिया का उत्पादन किया जाता है और अमोनिया तथा सल्फ्यूरिक एसिड की अभिक्रिया से अमोनियम सल्फेट बनाया जाता है जिसका उपयोग खाद के रूप में किया जाता है। कोलतार का आसवन करके अनेक रसायन जैसे—बैन्जाल, फीनोल, या कार्बनिक एसिड, नैप्थलीन, ऐन्थ्रासीन आदि प्राप्त किए जाते हैं जिनका उपयोग अनेक उद्योगों यथा रंग, विस्फोटक, इत्र, कीड़े मारने की दवा, प्लास्टिक, रेयान, नायलौन, नकली रबर आदि अनेक उद्योगों में किया जाता है (चित्र


15) । आसवन के पश्चात् जो अवशेष बचता है उसे पिच कहते हैं और इसका उपयोग सड़क बनाने में किया जाता है।


सामान्यतः कोयला गैस के अलावा दो अन्य प्रकार की गैसें भी कोयले से उत्पन्न होती हैं:


- (1) वायु—अंगार गैस (Producer Gas)—यह गैस लाल तप्तकोयले या कोक के ऊपर से हवा को बहाकर प्राप्त की जाती है।
- (2) भाप-अंगार गैस (Water Gas) यह गैस गर्म कोयला या कोक पर पानी या भ्राप बहाकर प्राप्त की जाती है। इस गैस में हाइड्रोजन और कार्बन मोनोक्साइड का मिश्रण होता है तथा इसकी तापन क्षमता (कैलोरीमान) वायु-अंगार-गैस से अधिक होती है।


कोयले से सिक्रियित कार्बन भी बनाया जाता है। इस कार्बन का उपयोग मुख्यतः चीनी उद्योग में चीनी साफ करने के लिए, डालडा बनाने वाले तेल का शोधन करने के लिए और गैस नकाब में अन्य गैसों से बचने के लिए भी किया जाता है।

कोलतार (अलकतरा) के उपोत्पाद

चूर्णित कोयला गैसीकरण प्रक्रिया द्वारा कोयले से खाद बनाई जाती हैं। तालचीर और रामागुंडम् में दो कोयला खान संयंत्रों द्वारा खाद का उत्पादन हो रहा है।

कोयले से कैल्शियम कार्बाइड का भी उत्पादन होता है और कैल्शियम कार्बाइड का जल से संपर्क होने पर ऐसीटिलीन गैस बनती है जिसमें रोशनी देने का गुण होता है। हमारे देश में शादी विवाह के अवसर पर शोभा यात्रा में तथा कुछ दुकानों में भी जो प्रकाश की व्यवस्था होती है वह इसी ऐसिटिलीन गैस से होती है।

आजकल कोयले से पेट्रोल और डीजल का भी उत्पादन किया जाता है। इसके लिए दो प्रक्रियाएँ हैं:

(i) बर्जियस प्रक्रिया : इसमें चूर्णित कोयले को अत्यधिक ताप और दाब पर हाइड्रोजन के साथ संपर्क में लाकर तेल का उत्पादन किया जाता है। (ii) फिशर ट्राप्स प्रक्रिया : इसमें भाप-अंगार गैस और हाइड्रोजन की अभिक्रिया से पेट्रोल जैसा ही तरल ईंधन प्राप्त किया जाता है।

हवा की अनुपस्थित में कोयले को तप्त करने के बाद जो अवशेष बच जाता है उसे कोक कहते हैं। स्पंजी और कठोर किस्म के कोक का उपयोग **झोंका भट्टी में लौह** अयस्क को गलाकर लोहा निकालने के लिए किया जाता है, किंतु सभी कोयले से उत्कृष्ट कोक का उत्पादन नहीं होता जो धातुकर्म के लिये उपयुक्त हो।

24. कोयले की खपत का प्रतिमान : विगत वर्षों में विभिन्न उपभोक्ताओं द्वारा कोयले की खपत का प्रतिमान बदल गया है। पहले कोयले का उपयोग अधिकांशतः रेलवे में होता था किंतु रेलवे इंजनों के डीजलीकरण और विद्युतीकरण के कारण रेलवे द्वारा कोयले की खपत में भारी कमी हुई है और अब तो नाम मात्र का (0.270 लाख टन) कोयला ही उपयोग किया जा रहा है। संपूर्ण कोयले की खपत का अधिकतम उपयोग तापीय विद्युत केंद्रों द्वारा विद्युत उत्पादन के लिए किया जा रहा है (लगभग 64.5%)। इसके बाद इस्पात एवं वाशरी उद्योग में कोयले की खपत लगभग 13.7% है। देश के विभिन्न उद्योगों द्वारा कोयले के उपयोग का विवरण सारणी 14. में दिया गया है।

सारणी 14. भारत में विभिन्न माध्यमों द्वारा कोयले (लिग्नाइट को छोड़कर) का वार्षिक उपयोग (दसलाख टन)

	TTP/2TTT/				1002		1004	1005	प्रति
	माध्यम/							1995-	
	उद्योग	90	91	92	93	94	95	96	शत
1.	इस्पात एवं वाशरी	30.61	30.91	34.03	37.36	37.63	38.55	39.08	13.76
2.	रेलवे	5.80	5.24	5.06	4.34	2.00	0.67	0.27	0.09
3.	विद्युत (अति सामान्य को छोड़कर)	108.32	113.71	126.84	138.57	154.41	160.35	184.49	64.95
4.	सीमेन्ट	9.53	10.43	10.80	11.70	11.07	12.36	11.06	3.89
5.	रूई	2.70	2.58	1.96	1.90	1.81	1.75	1.18	0.41
6.	जूट	0.12	0.12	0.12	NA	NA	0.05	0.05	0.01
7.	कागज	2.90	2.81	2.67	2.56	2.90	3.17	3.22	1.14
8.	ईटा*	1.73	1.71	1.75	1.65	1.54	1.03	0.91	0.32
9.	नरम कोक के लिए कोयला	1.21	1.20	1.03	0.97	0.44	0.33	0.29	0.10
10	अन्य उपयोग	36.64	40.58	40.51	38.71	39.53	46.72	39.98	14.08
11.	खदान (कोयला)	4.20	4.07	4.10	3.99	4.71	3.70	3.52	1.23
	संपूर्ण योग	203.76	213.36	228.87	241.75	256.04	269.18	284.05	99.98

^{*} रेलवे द्वारा भेजा गया।

25. कोयले का निर्यात : भारत नियमित रूप से कोयले का निर्यात करता रहा है। भारतीय कोयले का उपयोग करने वाले प्रमुख देश नेपाल, बांगला देश और भूटान हैं। 1977-78 में जहाँ 6 लाख टन कोयले का निर्यात किया गया वहीं 1979-80 में यह घटकर 2 लाख टन और 1988-89 में 1.6 लाख टन हो गया। विभिन्न वर्षों में कोयले के निर्यात का विवरण नीचे दिया गया है—

सारणी 15.

भारत से कोयले का निर्यात

वर्ष	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96
निर्यात	0.16	0.10	0.11	0.13	0.19	0.12	0.12

पहले श्रीलंका, बर्मा और दक्षिणी कोरिया को भी कोयले का निर्यात होता था। इधर पेट्रोलियम और डीजल की कीमतें तीव्र गित से बढ़ रही हैं और आपूर्ति भी प्रतिबंधित होती जा रही है। इसलिए भविष्य में भारत से कोयले के निर्यात की अच्छी संभावनाएँ हैं।

26. कोयले का आयात चूँकि भारतीय कोककारी कोयले में 18.5% राख की मात्रा होती है, इसिलए इस्पात उद्योग की आवश्यकतानुसार राख की कम मात्रा (10% से कम) वाले मूल कोककारी कोयले का आयात किया जाता है तािक कोयला मिश्रण से बने हुए कोक में 17 प्रतिशत राख का स्तर कायम रखा जा सके। भारत में इस प्रकार के कोयले का आयात निरंतर बढ़ता जा रहा है जैसा कि सारिणी 16 से स्पष्ट है:

सारणी 16.

भारत में कोयले का आयात

वर्ष	1989-90	1990-91	1991-92	1992-93	1993-94	1994-95	1995-96
आयात	0.16	0.10	0.11	0.13	0.19	0.12	0.12

दुनियाँ में कोयले के प्रमुख निर्यातक देश आस्ट्रेलिया, कनाडा, पौलैंड, दक्षिण अफ्रीका और उत्तरी अमेरिका हैं। भारत में कोयला मुख्यतः आस्ट्रेलिया से आता है।

27. कोयला और प्रदूषण : कोयला ऊर्जा का प्रमुख स्रोत है। ऊर्जा उत्पादन में कोयले का उपयोग लगातार बढ़ रहा है और उसी अनुपात में पर्यावरण भी प्रदूषित हो रहा है जो गंभीर चिंता का कारण बन चुका है। उत्पादन से लेकर उपयोग तक कोयले द्वारा प्रदूषण

के कारण अनेक समस्याएँ उत्पन्न हो रही हैं जिनसे पर्यावरणीय संतुलन बिगड़ता जा रहा है जिसका कुप्रभाव जनजीवन पर और वनस्पतियों पर पड़ रहा है।

जब किसी खदान का आरंभ और विकास किया जाता है तब उस क्षेत्र के पेड़-पौधे काट दिए जाते हैं। कोयला उत्पादन के साथ ही धूल उड़ने और मशीनों तथा विस्फोटकों की आवाज से वातावरण प्रदूषित हो जाता है। खुली खदानों में इकट्ठा पानी तमाम बीमारियों का कारण बनता है। कोयले के जलने से जो जहरीला धुआँ निकलता है वह सबसे ज्यादा हानिकारक होता है क्योंकि इसमें CO, CO2, SO2, और NH4 आदि विषैली गैसें होती हैं। इस धुएँ को वायुमंडल में फैलने से कोहरे जैसा दृश्य दिखलाई पड़ता है जो सूर्य की रोशनी को पृथ्वी की सतह पर आने से रोकता है। इसमें महीन धूल के कण, कार्बन-डाइआक्साइड और सल्फर-डाइआक्साइड की मात्रा अधिक होने से तमाम जानलेवा बीमारियाँ उत्पन्न होती हैं। कार्बन-डाइआक्साइड की अधिक मात्रा सूर्य की गर्मी को पृथ्वी पर आने तो देती है किंतु पृथ्वी द्वारा विकीणित ऊष्मा को वापस वायुमंडल में जाने से रोकती है जिससे वायुमंडल का तापक्रम लगातार बढ़ सकता है जो हानिकारक है। इसी प्रकार कोयले के गंधक से उत्पन्न सल्फर डाइआक्साइड वाष्य और पानी के संपर्क में आकर गंधक का अम्ल बनाती है जिसकी वर्षा होती है और जिसके बहाव से जीव-जंतुओं तथा पेड़-पौधों का भारी विनाश होता है, खदान की मशीनें और इमारतें नष्ट होती हैं।

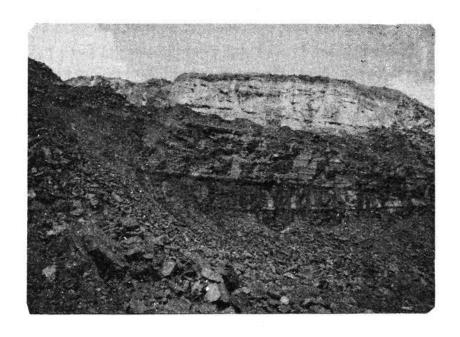
ताप विद्युत के उत्पादन केंद्रों के पास उनकी क्षमता के अनुसार राख की मात्रा एकत्रित होती है जिसका निस्तारण एक गंभीर समस्या है। इस राख से विशेषतः बरसात के मौसम में पानी का संपर्क होने पर हानिकारक सूक्ष्म तत्व (Sb, As,Ba, Be, Cd, Cr, Co, Cu, Pb, Li, Hg, Se, Sn, u, V आदि) पानी में मिलकर उसे प्रदूषित कर देते हैं जिसका हानिकारक प्रभाव मनुष्यों जानवरों, पानी में रहने वाले जीवों और वनस्पतियों पर पड़ता है। यहाँ तक कि भूमिगत जल भी प्रदूषित हो रहा है। इन तत्वों में से कुछ कोयले के जलने से उत्पन्न गैसों में भी होते हैं जो कैन्सर, हृदयरोग, गुर्दे, फेफड़े एवं पेट की अनेक बीमारियों का कारण बनते हैं।

इस समय विश्व के सबसे अधिक प्रदूषित देशों में उत्तरी अमेरिका, रूस, ब्राजील और चीन के बाद भारत का पाँचवां स्थान है।

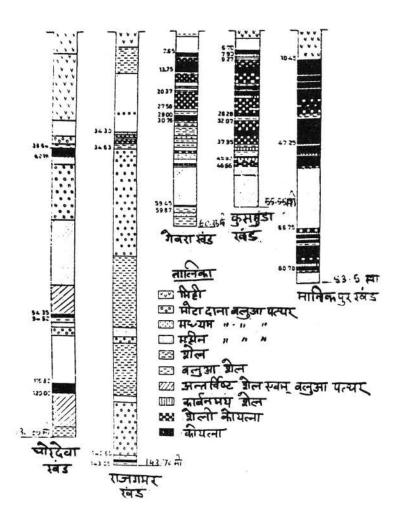
28. कोयले का संरक्षण : प्रकृति द्वारा कोयले की रचना में लाखों वर्ष लगते हैं। इसलिए यह बुद्धिमानी नहीं होगी कि हम बिना किसी योजना के कोयले का उपयोग करते रहें। चूँकि कोयला रसायनों का भंडार है, इसलिए हमारा भरसक प्रयास होना चाहिए कि हमें कोयले से सभी महत्वपूर्ण रसायन उपलब्ध हो जाए। रसायनों को निकाल लेने के बाद बचे हुए अवशेष को तापन के उपयोग में लाना चाहिए। पूरे विश्व में कोककारी कोयले की

कमी है। अतः कोककारी कोयले का उपयोग केवल धातुकर्म के लिए करना ही उचित और उत्तम है। वास्तव में धातुकर्म के लिए कमजोर या अकोककारी कोयले को अच्छी किस्म के मूल कोककारी कोयले के साथ मिलाकर उपयोग में लाने का भरसक प्रयास करना चाहिए। सुनियोजित ढंग से कोककारी कोयले का उपयोग करने पर हमारा भंडार 100 वर्षों तक के लिए वर्तमान दर से खपत होने पर पर्याप्त हो सकता है, अन्यथा आने वाले 50 वर्षों के बाद हमें बड़ी कठिनाइयों का सामना करना पड़ेगा।

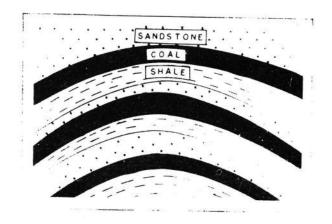
29. कोयले की भावी आवश्यकता: हमारी आर्थिक सम्पन्नता और समृद्ध स्थित इस बात पर निर्भर करती है कि हम कितनी कुशलता से देश की ऊर्जा संबंधी भावी आवश्यकता को पूरा कर पाते हैं। भारत में कोयला सबसे अधिक प्रचुरता और सरलता से उपलब्ध ऊर्जा स्रोत है और यह आने वाले सैकड़ों वर्षों तक उपलब्ध रहेगा। व्यावसायिक दृष्टि से यह अन्य स्रोतों की अपेक्षा सस्ता भी है। इसके विपरीत तेल का हमारा भंडार अत्यंत सीमित है और इसका उत्पादन हमारी आवश्यकता का केवल एक भाग ही पूरा कर पाता है, शेष बाहर से आयात करना पड़ता है। अंतर्राष्ट्रीय बाजार में तेल की आपूर्ति तथा कीमत में घोर अनिश्चितता की स्थित बनी हुई है जो हमारी आर्थिक कठिनाई का प्रमुख कारण है।

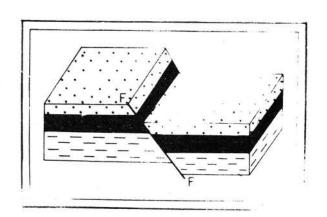

पिछले तीन दशकों में भारत ने नाभिकीय ऊर्जा के क्षेत्र में अच्छी सफलता प्राप्त की है और इसका भविष्य उज्ज्वल है। यद्यपि देश में यूरेनियम का मंडार (70,000 टन) सीमित है किंतु थोरियम का विपुल भंडार (3,60,000 टन) है जो वर्तमान कोयले के निचय के पाँचगुने के बराबर है। इस प्रकार थोरियम से नाभिकीय ऊर्जा के उत्पादन का प्रयास पूर्णतः सफल होने पर वर्तमान स्थिति में सुधार की उम्मीद की जा सकती है किंतु अभी भी इस क्षेत्र में बहुत-सी कठिनाइयाँ हैं जिन्हें दूर करने का प्रयास हमारे नाभिकीय वैज्ञानिक कर रहे हैं। अतः यह स्पष्ट है कि भावी आवश्यकताओं की पूर्ति में कोयले की प्रधानता आने वाले दिनों में बनी रहेगी।

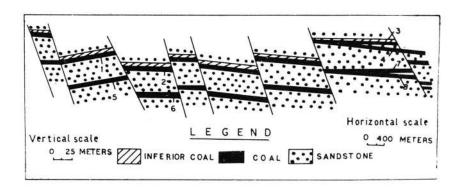
1979 में कोयले पर कार्यरत समूह ने यह अनुमान लगाया था कि 1999 से 2000 तक कोयले की माँग 420 से 53 करोड़ टन के बीच होगी और इसका अधिकांश भाग विद्युत् उत्पादन में प्रयुक्त होगा जो सारणी 14 से स्पष्ट है। देश में कोयले का उत्पादन बढ़ाने का हर संभव प्रयास किया जा रहा है और इस शताब्दी के अंत तक वार्षिक उत्पादन कम से कम 40 करोड़ टन करने की योजना है।

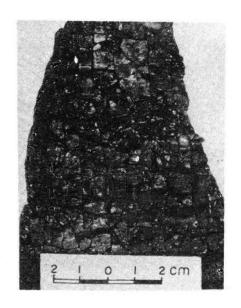

कोयले को प्रमुख एवं प्राथमिक ऊर्जा स्रोत का स्थान देकर नियमित एवं ठोस ऊर्जा नीति पर ही भारत का प्रगतिशील भविष्य निर्भर है। इस नीति के सफल क्रियान्वयन के पूर्व आवश्यक यह है कि लोगों की ऊर्जा की विभिन्न समस्याओं से अवगत कराने का प्रयास किया जाए जिससे कि कोयला, पेट्रोल और इनके उत्पादों का अपव्यय रोका जा सके। हमें यह समझना चाहिए कि वर्तमान में पेट्रोलियम तथा पेट्रोलियम उत्पादों के आयात की मद में हम प्रति मिनट एक लाख पच्चीस हजार रुपये विदेशी मुद्रा के रूप में खर्च कर रहे हैं।

गैर-व्यावसायिक ऊर्जा जैसे लकड़ी, सूखी पितयाँ और जानवरों के गोबर के उपले आदि पर निर्भरता में कटौती होनी चाहिए। जब तक प्रामीण क्षेत्रों में निर्धन लोगों को वैकल्पिक ईंधन उपलब्ध कराने की व्यवस्था नहीं होगी, लकड़ी के लिए जंगलों पर दबाव बना रहेगा। हमारे देश में प्रति वर्ष एक करोड़ पचास लाख हेक्टेयर की दर से अच्छे किस्म के जंगल नष्ट हो रहे हैं। इस कमी को पूरा करने के लिए प्रतिवर्ष 50 लाख हेक्टेयर में वृक्ष लगाने के लक्ष्य का कठोरता से पालन करना चाहिए। इससे वातावरण के प्रदूषण को भी नियंत्रित करने में मदद मिलेगी।

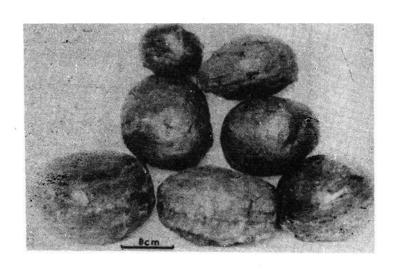

आवश्यकता इस प्रयास की है कि ईंधन को पूर्ण रूप से जलाने और अधिक ऊष्मा देने वाले विकसित उपकरणों का उपयोग किया जाए तथा नवीनीकरण एवं गैर-पारंपरिक ऊर्जा संसाधनों की सहज उपलब्धता सुनिश्चित करते हुए इसके उपयोग पर विशेष बल दिया जाए।

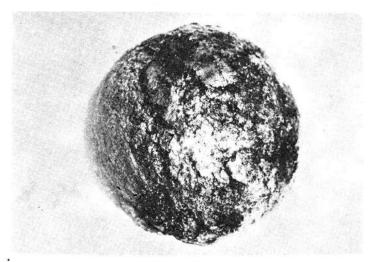

चित्र : 1. (अ) एक कोयला संस्तर


चित्र : 1. (ब) कोयले एवं सहचारी शैलों का स्तरीय वितरण

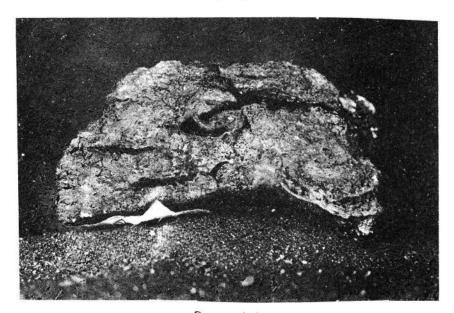

चित्र : 2. (अ) बलित कोयला संस्तर

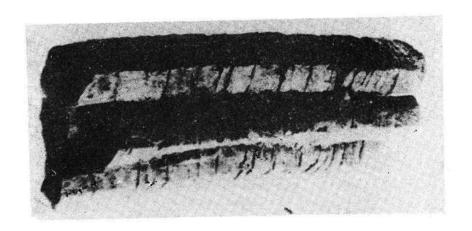
चित्र : 2. (ब) भ्रंशित कोयला संस्तर

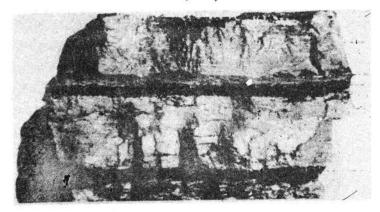

चित्र : 3. विभाजित कोयला संस्तर

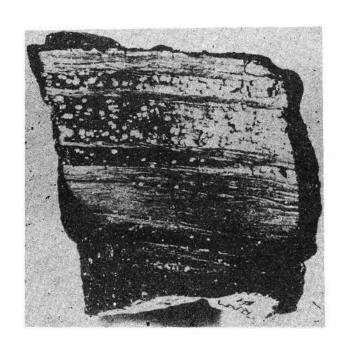

चित्र : 4. कोयले में क्लीट

चित्र: 5. (अ) कोयला बॉल (कोयला संस्तर से अलग)

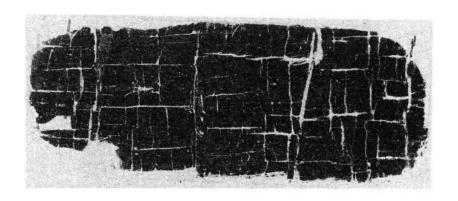

चित्र : 5. (ब) बाल कोल (कोयला संस्तर से अलग)

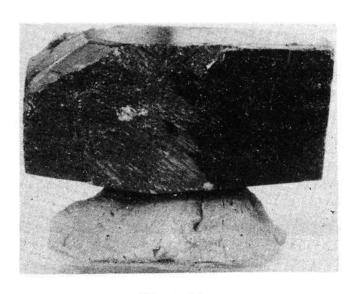

चित्र: 6. (अ) एक कोल बॉल

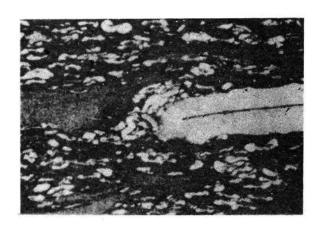

चित्र : 6. (ब) कोल बॉल में वनस्पति संरचना

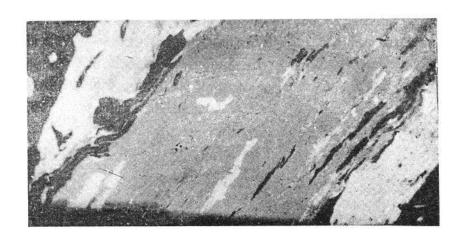

चित्र : 7. (अ) ताप से प्रभावित कोयला

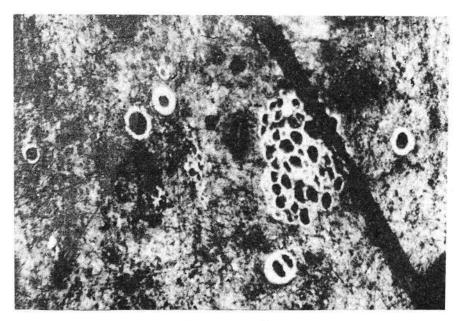
चित्र : 7. (ब) ताप से प्रभावित कोयला

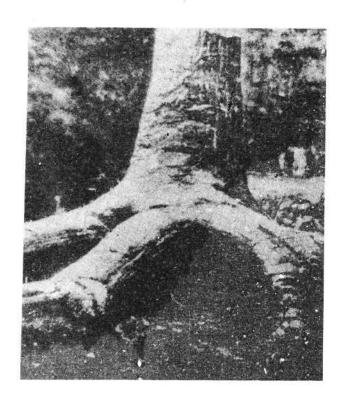

चित्र : 8. (अ) कोयले में पट्टित घटक

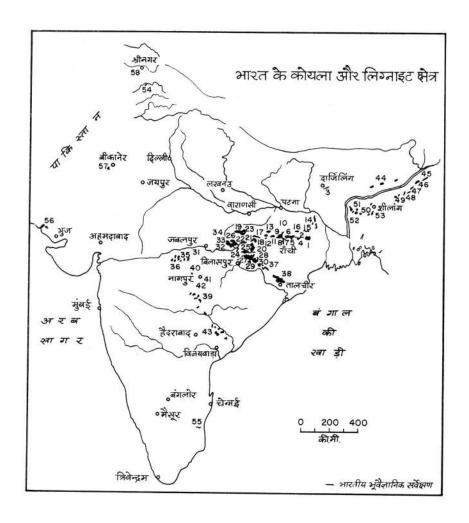

चित्र : 8. (ब) कोयले में खनिज (धब्बे के रूप में)

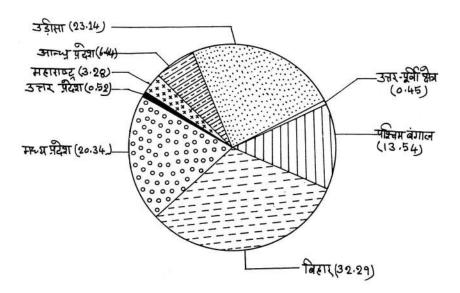

चित्र : 8. (स) लिग्नाइट में राल

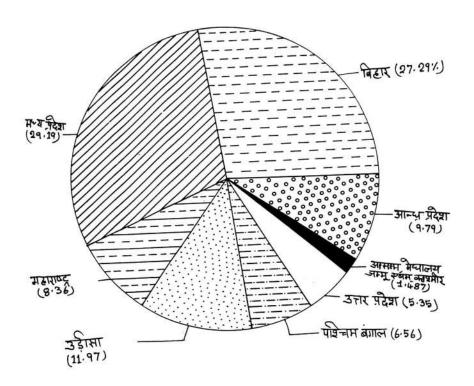

चित्र : 9. (अ) कोयले की पार्श्वदर्शी काट

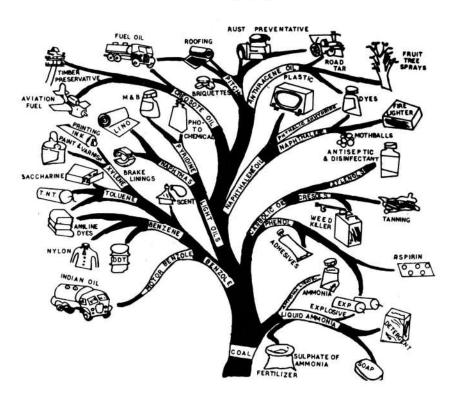

चित्र : 9. (ब) कोयले का पालिश किया हुआ खंड


चित्र : 9.(स) संचारित प्रकाश सूक्ष्मदर्शी से देखने पर कोयले का रूप


चित्र : 10. परावर्तो प्रकाश सूक्ष्मदर्शी से देखने पर कोयले का रूप


चित्र : 11. कवकी काय


चित्र : 12. कोयला संस्तर में सीधा खड़ा वृक्ष का तना


चित्र : 13. भारत के कोयला और लिग्नाइट क्षेत्र

चित्र 14 भारत में राज्यवार कोयला निचय प्रतिशत

चित्र : 14. (अ) भारत में राज्यवार कोयला उत्पादन (प्रतिशत)

चित्र : 15. कोलतार (अलकतरा) के उपोत्पाद

शब्द-सूची

(हिंदी-अंग्रेजी)

oval

intrusion

embedded

inorganic

infusible

fire proof

molecule

reduction

Oligocene

अंडाकार अंतर्वेधन अंतःस्थापित अकार्बेनिक अगलनीय अग्निसह अणु

अतिभार overload अतिक्षुड्य much disturbed अधात्विक non-metallic

अपचयन

अल्पनूतन

अधिविष्ट occluded अधिशोषण adsorption अनवस्थित impersistent अनावरण exposure अनुक्रम sequence

अपराश्म xenolith अपसामान्य abnormal अभिक्रिया reaction अभिक्रियाशील reactive

अभिनव कल्प recent Era अम्ल acid अलकतरा coal-tar अल्पनूतन युग Oligocene epoch अवतलन subsidence अवक्षेपण precipitation अवशेष remains, residual

अवशोषण absorption अवशोषित absorbed अवसाद sediment sediment अवसादन sedimentation अवस्था condition अवस्थित persistent अवायुजीव anaerobe

असंपिंडित unconsolidated ऑक्सीकरण oxidation आग्नेय igneous आणविक molecular आद्य महाकल्प archaean Era

आधार support आधार शैल bed rock आधात्री matrix आनुवंशिक genetic आयतन volume आयु age

आर्द्रता (1) humidity (2) moisture

आवरण cover इओसीन, आदिनूतन Eocene

इओसीन युग Eocene epoch उत्पत्ति origin/genesis

उत्पाद grains उत्पाद product उत्पादन generation/production

उपसमूह subsystem

उपयोग exploitation/utilisation

उष्णजलीय hydrothermal

ऊष्मा heat

ক্তম্পাक्षेपी exothermic কর্সা energy করক tissue

एकत्रित agglomerated ऐन्थ्रासाइट anthracite ऐन्थ्रेसाइटी anthracitic कच्चा माल raw material

कच्छ marsh कठोर hard कल्प period

कवक सेलुलोस fungus cellulose कवको काय fungal body

क्लीट cleat क्लेरेन clearain काट section

कार्बनम्य carbonaceous कार्बनयुक्त carbonaceous

काल age किलोग्राम kilo

किलोग्राम kilogram क्रिस्टल crystal कूपक shaft केक cake केक बनाना caking

कैनेल कोयला cannel coal

कैम्ब्रियन cambrain कैलोरीमान calorific value

कोक coke कोककारी coking कोटि rank कोयला coal कोयला गैस coal gas कोयला निचय coal reserve कोयला बेसिन coal basin कोयला युक्त संस्तर coal measure क्रोयला स्तंभ coal pillar कोयला संस्तर coal seam कोयला क्षेत्र coal field कोशिका cell कोशिकीय cellular खंड segment

mine खदान mining खनन

खनिज mineral mineralization खनिजन

खनिज अवयव mineral constituent

खनिज ईंधन mineral fuel

mineral component खनिज धटक

mineral pitch खनिज डामर mineral element खनिज तत्व खनिज सज्जीकरण mineral benification

mine खान

खोज exploration sulphur गंधक

sulphurization गंधकीकरण

गठन texture गर्त pit गलन fusion गलनीय fusible

গলন ক্তম্মা heat of fusion

गुणता quality गैलरी gallery गैस gas

गैसीकरण gasification गैसीय gaseous गोली pellet ग्रंथिका nodule घटक component घाटी valley घुलनशील soluble घुलना dissolve

चतुर्थ महाकल्प quarternary Era चतुर्थ महाकल्पी quarternary चतुष्क quarternary चूर्ण powder चूर्णी powdery जटिल complex जड़ root जन्मजात inherent जनक parent

जनक शैल parent rock जल water

जलरागी water loving जलवातीय aero-aquatic जलोढ alluvial जलोढक alluvium

जलोढ निक्षेप alluvial deposit नूतनजीव महाकल्प cenozoic era biochemical जीवाणु bacteria जीवाश्म fossil

जीवाश्मन fossilization जीवाश्मीय palaeontological

जैल gel

जैव पदार्थ organic matter जैविक कार्बन organic carbon

ज्वार tide
ज्वारनद estuary
ज्वारनदमुखी estuarine
ज्वारीय tidal
ज्वाला flame
झील lake

झोंका भट्टी blast furnance

डामर coal-tar तट shore तत्व element तत्वात्मक elemental

तत्वात्मक संरचन। elemental composition तत्वात्मक विश्लेषण ultimate analysis

तप्त hot तल bottom तल-मृदा seat earth

तात्विक गंधक elemental sulphur

तापन heating तार tar तृतीय महाकल्प

दरार दस लाख

दहन द्युति द्युतिमान दाब

दुर्लभ मृदा दीर्घा दृश्यांश

द्रव द्रव्य द्रोणी

धात्विक खनिज धातकर्म

धातुकर्मीय धावन

धावनी

धावनी उद्योग

धूल धूसर

नत

नति नदीय

न्यूनभस्म कोयला नवीकरण

निकटतम विश्लेषण

निचय निर्माण निर्यात tertiary era

crack million

combustion lusture

lustureous plessure

rare earth gallery

outcrop liquid

matter basin

metallic mineral metallurgy metallurgical

washing washery

washery industry

dust grey

tilted, dipped

dip fluvial

low ash coal

renewal

proximate analysis

reserve formation export निरपेक्ष absolute निरपेक्ष आयु absolute age निक्षेप deposit निक्षेपण deposition नीलकृष्ण bluish black पटलन lamination पट्टी band पट्टित banded पर्मियन permian परावर्तक reflector परिपक्व mature परिपक्वता maturity परिपक्वन maturation

परिमाण magnitude, quantity

पीट peat
पीटमय peaty
पीट कोयला peat coal
पीट दलदल peat bog
पुनःआसवन redistillation
पुनर्निक्षेप redeposit
पुनर्वितरण redistribution

पेट्रोल petrol पट्रोलियम petroleum प्रतिदर्श sample प्रथम महाकल्प primary Era प्रदूषण pollution प्रदेश region प्रधान prime प्रस्वप type phase प्रावस्था

प्रावार mantle प्रोटीन protein फ्यूज़िनाइट fusinite फ्यूजेन fusain बालू sand

बालुकामय arenaceous बिटुमेनी bituminous

बोग, दलदल bog

भंजक आसवन destructive distillation

भट्टी oven, furnace भाप-अंगार-गैस water gas भंश fault

भूमिगत underground भू-रसायन geochemistry भूरा कोयला brown coal भूविज्ञानी geologist

भूवैज्ञानिक अनुक्रम geological succession भूवैज्ञानिक इतिहास geological history भूवैज्ञानिक कल्प geological period भूवैज्ञानिक काल geological age

भू-वैज्ञानिक तापमापी geological thermometer भूवैज्ञानिक प्रदेश geological province भूवैज्ञानिक महाकल्प geological era भूवैज्ञानिक मानचित्र geological map भूवैज्ञानिक युग geological epoch भू-वैज्ञानिक वितरण geological distribution

भूवैज्ञानिक शैलसमूह geological formation भूवैज्ञानिक समय geological time भौगोलिक geographical भौतिक physical rध्यजीवी महाकल्प mesozoic Era rध्यनूतन miocene rसूराकार lenticular

महाकल्प era मानचित्र map माप measure मार्श गैस marsh gas

मुक्त free

मूल fundamental

मूल घटक primary constituent मूल पदार्थ source material

मृत्तिका clay मैसेरल maceral मोमी waxy

मौलिक fundamental रक्त-तप्त red hot रवाहीन amorphous रसायन chemical ash

रासायनिक अभिक्रिया chemical reaction

रेखांकन striation रेजिन resin रेजिनी resinous रेशेदार fibrous लकडी wood लकडी का कोयला charcoal लाल ताप red heat लिग्नाइट lignite लिग्निन lignin

लेप coat लौह iron

लौहमय ferrogenous

वर्ग group

वर्गीकरण classification

वर्णरेखा streak vegetation वलन fold

वलित folded वहन transport वाहिका channel वाहित transported

वाहित निक्षेप transported deposit

विकीर्णित disseminated वितरण distribution विदलन cleavage

विदलन तल cleavage plane

विपाटित split विपाटन splitting विभंग fracture विशेषता characteristic

विस्तार extension विस्तीर्ण extensive

विस्थापन displacement/drift

विस्फोट blast

विक्षोभ turbulence वेधन drilling शंखाभ conchoidal शीर्ष संधि vertical joining

शुष्क dry

शैल rock

शैल गलन rock fusion

शैल मलवा scree

शैल विभंग rock fracture

शैल समूह system शैवाल algae

शैवाल स्तर algal layer शोधन refining श्रेणी grade, series

श्रेणीकृत graded

स्तरण stratification

स्तरित statified स्पंज sponge स्पंजी spongy

स्ताइड slide स्वतः spontaneous

स्वतः दहन

spontaneous

combustion

संक्रमण transition संखंडाश्म clastic rock संगुटिकाश्म conglomerate संघटन composition संघनन condensation

संघनित condensed संचारित transmitted

संचारित प्रकाश transmitted light संज्वालाश्म agglomerate

संज्वालश्मी agglomerative

संतुलन balance संदलन crushing संदलित crushed संधि joint

संधि समूह joint system संपीडन compression संपीडित compressed संरचना structure संरक्षण conservation संवहनी vascular

संस्तर (1) measure

(2) bedrock (3) seam संहत compact

संहिनत compacted

समुच्चय set समुदाय stage समूह system सरोवरी निक्षेप lake deposit

सहजात syngenetic सहजनन sygenesis सांद्रण concentration सांद्रता concentration

साधन resources सारणी table सीनोजोइक cenozoic

सीनोजोइक महाकल्प cenozoic era

सूचकांक index

सूक्ष्मदर्शी microscrope सूक्ष्मदर्शीय microscopic सैप्रोपेल sapropel सैप्रोपेली sapropelic ह्यूमस humus ह्यूमसी ह्यूमसीकरण ह्यूमसी कोयला हाइड्रोकार्बन हाइड्रोजन हाइड्रोजन ऑयन

humic humification humic coal hydrocarbon hydrogen hydrogen ion

शब्द-सूची (अंग्रेजी-हिंदी)

अपसामान्य abnormal अपघर्षण abrasion निरक्षेप आयु absolute age अवशोषण करना absorb अवशोषित absorbed अवशोषण absorption संचयन accumulation acid अम्ल सक्रियित activated सक्रिय कार्बन active carbon सक्रिय निक्षेप active deposit अधिशोषण adsorption जलवातीय

aero-aquatic वायुजीव, ऑक्सीजीव aerobe काल, युग, आयु age

agglomerate संज्वालाश्म संज्वालाश्मी agglomerated aggregation समुच्चय शैवाल algae शैवाल स्तर algal layer जलोढ alluvial जलोढ निक्षेप alluvial deposit

जलोढक alluvium रवाहीन amorphous

अवायुजीव/अनॉक्सीजीव anaerobe

archaean era आद्य महाकल्प

area क्षेत्र

arenaceous बालुकामय ash राख assemblage समुच्चय associate सहचारी

bacteria जीवाणु, बैक्टीरिया

balance संतुलन
ball coal कोयला बॉल
band पट्टी
banded पट्टित
bark छाल

basic मूल, आधारी

basin द्रोणी
bed संस्तर
bed rock आधार शैल
bedding संस्तरण

biochemical जैव रासायनिक

biological जैविक

blast विस्फोट करना blast furance झोंका भट्टी

bottom तल

brown coal भूरा कोयला (लिग्नाइट)

caking केंक बनाना
calorie कैलोरी
calorific value कैलोरी मान
cannel coal कैनेल कोयला
carbonaceous कार्बनमय

carbonaceous rock कार्बनयुक्त शैल cell कोशिका cellular कोशिकीय, कोशिकामय cenozoic era सीनोजोइक महाकल्प,

नूतन जीव महाकल्प

channel वाहिका, जलमार्ग characteristic विशेषता

charcoal लकड़ी का कोयला/चारकोल

chemical action रासायनिक क्रिया

chemical action रासायनिक क्रिय

clarian क्लेरन class वर्ग

classification वर्गीकरण
clastic rock खंडज शैल
clay मृत्तिका
cleat क्लीट
cleavage विदलन
coal कीयला

coal anthracite ऐन्ध्रासाइट कोयला coal ball कोल बॉल

concretionary nodule संग्रधित ग्रंधिका

condensation संघनन condensed संघनित

condition अवस्था, परिस्थिति

संगुटिकाश्म conglomerate संरक्षण conservation घटक constituent संघटन constitution आवरण cover दरार crack संदलन crush क्रिस्टल crystal

coking coal कोककारी कोयला

coal basin कोयला बेसिन
coal field कोयला क्षेत्र
coal gas कोयला गैस
coal measure कोयलायुक्त संस्तर
coal reserve कोयला निचय
coal seam कोयला संस्तर
coal tar अलकतरा, कोलतार

coat लेप
coke कोक
coking कोकन
combustion दहन

संहति, संहत compact जटिल complex घटक component संघटन composition यौगिक compound संपीडित compressed संपीडन compression सांद्रता concentration शंखाभ conchoial संग्रथन concretion मलबा debris अपघटन decomposition निम्नीकरण degradation निक्षेप deposit निक्षेपण deposition नति dip dipping नत

dipping नत displacement विस्थापन dissolve घुलना distillation आसवन वितरण distribution विस्थापन drift वेधन drilling शुष्क dry द्युतिहीन dull डूरिअन durian dust धूल भूगर्भ earth's interior तत्व element ऊर्जा energy

eocene epoch इओसीन युग, आदि नूतन युग

epoch geological भूवैज्ञानिक युग

महाकल्प era **ज्वारनदमुखी** estuarine ज्वारनद्मुख estuary वाष्पीकरण evaporation विकास evolution ऊष्माक्षेपी exothermic समुपयोजन exploitation खोज, अन्वेषण exploration

export निर्यात
exposure अनावरण
extension विस्तार

extensive विस्तीर्ण, विस्तृत

extent विस्तार

factor geological भूवैज्ञानिक कारक

fault प्रंश faulted प्रंशित faulting प्रंशन ferrous फेरस
ferrogenous लोहमय
fertilizer उर्वरक
fibrous रेश्रेदार
field क्षेत्र

अग्निसह fire proof ज्वाला flame flow प्रवाह नदीय fluvial fold वलन वलित folded पूर्वानुमान forecast आकृति form

formation निर्माण, रचना formation (geo.) श्रैल समूह fossil जीवाश्म

fossilization जीवाश्म भवन, जीवाश्मन

fracture विभंजन, विभंग खंड, दुकड़ा खंडमय खंडन क्वा खंडन मुक्त

fundamental मूल, मौलिक fungal body कवकीकाय fungus (fungi) कवक, फंगस fungus cellulose कवक-सेलुलोस

furnace भट्टी fusain फयूजेन fusinite फयूज़िनाइट fusion of rocks शैल संगलन gallery दीर्घा, गैलरी gangue गैंग gas गैस

gas गस gaseous गैसीय

gassification गैसीकरण, गैसीयन gasify गैसीभूत होना

gel जेल

generation उत्पादन, जनन

उत्पत्ति genesis आनुवंशिक genetic geochemistry भू-रसायन भौगोलिक geographical भुवैज्ञानिक geological श्रेणी, कोटि grade श्रेणीकृत graded धूसर grey

group वर्ग, समूह hard coke हार्ड कोक heat ऊष्मा

heating तापन

heat of fusion

संगलन ऊष्मा

humic coal ह्यूमसी कोयला

humidityआर्द्रताhumificationह्यूमस बननाhumusह्यूमसhydrocarbonहाइड्रोकार्बन

hydrophile जलरागी hydrothermal ऊष्णजलीय hydrogen ion हाइड्रोजन ऑदन

आग्नेय igneous सूचकांक index inherent जन्मजात अकार्बनिक inorganic यंत्र instrument अंतर्वेधन instrusion लौह iron संधि joint

joint system संधि-समूह kalorie (kilo) कैलो री (किलो) lake झील/सरोवर सरोवरी निक्षेप

lamination पटलन
laminated पटलित
lenticular मसूराकार
lignin लिग्निन
limestone चूना पत्थर

lusture द्युति/चमक

lustrous द्युतिमान, चमकदार

lignite लिग्नाइट
maceral मैसेरल
magnitude परिमाण
mantle प्रावार
map मानचित्र
marsh कच्छ

marsh gas मार्श गैस, मीथेन

matrix आधात्री
matter द्रव्य, पदार्थ
maturation परिपक्वन
mature परिपक्व
maturity परिपक्वता

measure 1. माप, 2. संस्तर

metallic धात्विक

metallic mineral धात्विक खनिज

method विधि धातुकर्मीय metallurgical धातुकर्म metallurgy सूक्ष्मदर्शी microscope सूक्ष्मदर्शीय microscopic million दस लाख mine खान, खदान mineral खनिज

mineral component खनिज घटक
mineral benification खनिज सज्जीकरण
mineral constituents खनिज अवयव
mineral element खनिज तत्व
mineral fuel खनिज ईंधन
mineral oil खनिज-तेल

mineral pitch खनिज-डामर, ऐस्फाल्ट mineralization खनिजीभवन/खनिजन

mining खनन
miocene मध्य नूतन
mist कुहासा
moisture आर्द्रता, नमी
molecular आणविक
molecule अणु

कार्बनिक, जैव

प्रतिमान, प्रतिरूप

natural प्राकृतिक, स्वाभाविक

प्रकृति nature ग्रंथिका nodule अकोककर non-coking सामान्य normal नाभिकीय nuclear अल्पनूतन oligocene अल्पनूतन युग oligocene epoch विवृत खान open mine

उत्पत्ति origin दृश्यांश outcrop अंडाकार oval भट्टी oven अतिभार overload ऑक्सीकरण oxidation जीवाश्मीय palaeontological जनक, मूल parent जनक शैल parent rock

organic

pattern

peat पीट

पीट दलदल peat bog पीट कोयला peat coal पीटमय peaty गोली pellet कल्प period परर्मियन permian पेट्रोल petrol पेट्रोलियम petroleum प्रावस्था phase

phosphatic फॉस्फेटी
phosphorus फॉस्फोरस
physical भौतिक
pit गर्त
pitch (mineral) डामर, पिच

platy पट्टित
pollution प्रदूषण
powder चूर्ण
powdery चूर्णी
precipitation अवक्षेपण
pressure दाब

prime प्रधान, मूल
product उत्पाद
protein प्रोटीन
quality गुण, गुणता
quantity परिमाण, मात्रा
qyaternary era चतुष्क महाकल्प

quaternary system

चतुष्क महाकल्पी शैल समूह

विकिरण ऊर्जा radiant energy विकिरण radiation कोटि rank दुर्लभ rare दुर्लभ मृदा rare earth कच्चा माल raw material अभिक्रिया reaction अभिक्रियाशील reactive

redeposition पुनर्निक्षेपण redistillation पुनःआसवन redistribution पुनर्वितरण reduction अपचयन परिष्करण refining परावर्तकता reflectance परावर्तन reflection परावर्तक reflector प्रदेश, क्षेत्र region नवीकरण renewal निचय reserve अवशेष residual राल/रेजिन resin रेज़िनी resinous

resources साधन, संसाधन

rock शैल
root जड़
sample प्रतिदर्श
sandstone बालुकाश्म
sapropel सैप्रोपेल

sapropelic coal सैप्रोपेली कोयला scree छाल, मलवा

संस्तर seam तल मृदा seat earth काट, खंड section sediment अवसाद sedimentation अवसादन खंड segment अनुक्रम sequence श्रेणी series

set समुच्चय shaft कूपक shore तट

स्लाइड slide सॉफ्ट कोक soft coke मूल पदार्थ source material विनिर्देश specification गोलाकार spherical गोलाभ spheroid विपाटित split विपाटन splitting स्पंज sponge spontaneous combustion स्वतः दहन

spore बीजाणु
stage (geol.) समुदाय
steel इस्पात
stem स्तंभ, तना
stratification स्तरण
stratified स्तिरत

striation रेखाकंन, रेखा, धारी structure संरचना, बनावट

अवतलन subsidence प्रतिस्थापन substitution sub-system उपसमूह उत्तरोत्तर successive sulphur गंधक गंधकी sulphurous आधार support syngenesis सहजनन syngenetic सहजात समूह system सारणी table टंकी tank

डामर, अलकतरा tar

temperature ताप

गठन, बनावट texture

तापीय thermal ज्वारीय tidal ज्वार tide tilted नत ऊतक tissue सहयता tolerance लेश तत्व trace element रूपांतरण transformation अतिक्रमण transgression संक्रमण transition

परिवहन, अभिगमन transportation वाहित निक्षेप transported deposit विक्षोभ turbulence

प्ररूप type

तत्वात्मक विश्लेषण ultimate analysis

असंपिंडित unconsolidated भूमिगत underground संवहनी vascular घाटी valley vapour वाष्प विविधता variation वनस्पति vegetation विट्रेन vitrain वाष्पशील volatile वाष्पीकरण

volatilization

1. आयतन, 2. खंड, volume

3. प्रवलता

washery प्रक्षालनी, धावनी water gas भाप-अंगार गैस

waxy मोमी

weed खर-पतवार, अपतृण

wood लकड़ी, काठ xenolith अपराश्म yield उत्पाद

zone (geol.) संस्तर, स्थिति

400-1998 (DSK-II)