

जनवरी-मार्च, 2020 ISSN: 2320-7736

विज्ञान गरिमा

सिंधु

गणितीय यांत्रिकी विशेषांक

अंक - 112

वैज्ञानिक तथा तकनीकी शब्दावली आयोग

मानव संसाधन विकास मंत्रालय (उच्चतर शिक्षा विभाग) भारत सरकार Commission for Scientific and Technical Terminology Ministry of Human Resource Development

(Department of Higher Education)
Government of India

ISSN: 2320-7736 (Print)

विज्ञान गरिमा सिंधु

(त्रैमासिक विज्ञान पत्रिका)
गणितीय - यांत्रिकी विशेषांक
अंक- 112
(जनवरी -मार्च, 2020)

वैज्ञानिक तथा तकनीकी शब्दावली आयोग

मानव संसाधन विकास मंत्रालय (उच्चतर शिक्षा विभाग), भारत सरकार

विज्ञान गरिमा सिन्धु परिचय एवं निर्देश

'विज्ञान गरिमा सिंधु' एक त्रैमासिक विज्ञान पत्रिका है। पत्रिका का उद्देश्य है— हिंदी माध्यम से विश्वविद्यालयी शिक्षकों, इंजीनियरों, वैज्ञानिकों एवं शोध छात्रों के लिए विज्ञान एवं तकनिकी संबंधी उपयोगी एवं अद्यतन पाठ्य पुस्तकीय तथा संपूरक साहित्य की प्रस्तुति। इसमें वैज्ञानिक लेख, शोध—लेख, तकनीकी निबंध, शब्द—संग्रह, शब्दावली—चर्चा, विज्ञान—कथाएं, विज्ञान—समाचार, पुस्तक—समीक्षा आदि का समावेश होता है।

लेखकों के लिए निर्देश

- लेख की सामग्री मौलिक, अप्रकाशित तथा प्रामाणिक होनी चाहिए।
- 2. लेख का विषय मूलभूत विज्ञान, अनुप्रयुक्त विज्ञान और प्रौदयोगिकी से संबंधित होना चाहिए।
- 3. लेख सरल हो जिसे विद्यालय / महाविद्यालय के छात्र आसानी से समझ सकें।
- 4. लेख लगभग 2000 से 3000 शब्दों का हो। कृपया टाइप किया हुआ या कागज के एक ओर स्पष्ट हस्तलिखित लेख भेजें जिसके दोनों तरफ हाशिया भी छोड़ें।
- 5. प्रकाशन हेतु भेजे गए लेख के साथ उसका सार भी हिंदी में अवश्य भेजें। लेख में आयोग द्वारा निर्मित शब्दावली का ही प्रयोग करें तथा प्रयुक्त तकनीकी / वैज्ञानिक हिंदी शब्द का मूल अंग्रेजी प्रर्याय भी आवश्यकतानुसार कोष्ठक में दें।
- 6. श्वेत-श्याम या रंगीन फोटोग्राफ स्वीकार्य हैं।
- लेख के प्रकाशन के संबंध में संपादक का निर्णय ही अंतिम होगा।
- 8. लेखों की स्वीकृति के संबंध में पत्र व्यवहार का कोई प्रावधान नहीं है। अस्वीकृत लेख वापस नहीं भेजे जाएंगे। अतः लेखक कृपया टिकट—लगा लिफाफा साथ न भेजें।
- 9. प्रकाशित लेखों के लिए प्रोत्साहन के तौर पर आयोग के नियमानुसार मानदेय दिया जायेगा। भुगतान लेख के प्रकाशन के बाद ही किया जाएगा।
- 10. कृपया लेख की दो प्रतियां निम्न पते पर भेजेः

संपादक, विज्ञान गरिमा सिंध्

वैज्ञानिक तथा तकनीकी शब्दावली आयोग

पश्चिमी खंड - 7 रामकृष्णपुरम्

नई दिल्ली - 110066

11. अपने लेख E-mail द्वारा तथा CD में भी (फॉन्ट के साथ) भेज सकते है।

E-mail: vgs.cstt@gmail.com

12. समीक्षा हेतु कृपया पुस्तक / पत्रिका की दो प्रतियां भेजें।

सदस्यता शुल्कः

सदस्यता अवधि	सदस्यता का प्रकार	
	सामान्य ग्राहकों / संस्थाओं के लिए	विद्यार्थियों के लिए
प्रति अंक	₹5. 14.00	₹5. 8.00
1 वर्ष	₹5.50.00	₹5. 30.00
5 वर्ष	₹5. 250.00	₹5. 150.00
10 वर्ष	₹5. 500.00	₹5. 300.00
15 वर्ष	₹5. 750.00	₹5. 450.00
20 वर्ष	₹5. 1000.00	₹5. 600.00

वेबसाइटः www.cstt.mhrd.gov.in www.csttpublication.mhrd.gov.in

बिक्री हेतु पत्र-व्यवहार का पताः

सहायक निदेशक, बिक्री एकक वैज्ञानिक तथा तकनीकी शब्दावली आयोग, मानव संसाधन विकास मंत्रालय, भारत सरकार, पश्चिमी खंड—7, रामकृष्णपुरम्, सेक्टर —1, नई दिल्ली — 110066

बिक्री स्थानः

प्रकाशन नियंत्रक, प्रकाशन विभाग भारत सरकार, सिविल लाइन्स, दिल्ली—110054

प्रकाशक:

वैज्ञानिक तथा तकनीकी शब्दावली आयोग मानव संसाधन विकास मंत्रालय, भारत सरकार, पश्चिमी खंड—7, रामकृष्णपुरम्, सेक्टर —1, नई दिल्ली — 110066

अध्यक्ष की कलम से...

वैज्ञानिक तथा तकनीकी शब्दावली आयोग द्वारा विभिन्न वैज्ञानिक तकनीकी एवं अन्य संबद्ध क्षेत्रों के क्षेत्र में तैयार की गई शब्दावली के समुचित उपयोग को सुनिश्चित करने तथा उच्चतर शिक्षा के क्षेत्र में वैज्ञानिक एवं तकनीकी लेखन को प्रोत्साहित करने के उद्देश्य से "विज्ञान गरिमा सिंधु" का प्रकाशन किया जाता है। आयोग द्वारा इस पत्रिका के कुछ विशेष विषयों पर विशेषांकों का समय समय पर प्रकाशन किया गया है। इसी क्रम में गणितीय— यांत्रिकी विशेषांक सहित कई विशेषांक अभी तक प्रकाशित किए जा चुके है। गणित एवं यांत्रिक इंजीनियरी पर केन्द्रित इस अंक को विशेषांक के रूप में प्रकाशित किया गया है जिसे सुधी पाठकों व लेखकों को सौपते हुए मुझे हर्ष का अनुभव हो रहा है। एक ही विषय पर विविधता पूर्ण शोध परक सामग्री पाठकों को प्रस्तुत करने से पाठकों को संबन्धित क्षेत्रों में हो रहे नवीनतम अनुसंधानों शोध—कार्यों आदि की अद्यतन सूचनाएँ एक ही साथ हिंदी भाषा में उपलब्ध हो जाती है।

"विज्ञान गरिमा सिंधु" का यह अंक विशेष रूप से गणित तथा अभियांत्रिकी विज्ञान और इससे सम्बद्ध वैज्ञानिक क्षेत्रों से जुड़े विषयों पर केन्द्रित है। पत्र—पत्रिकाएँ न केवल संस्था विशेष के ज्ञान के वैशिष्ट्च की परिचायक होती हैं, बल्कि राष्ट्रीय स्तर पर अलग अलग क्षेत्रों में हो रहे महत्वपूर्ण अनुसंधानों व शोध कार्यों का एक समेकित व जनोपयोगी सार्थक मंच भी है। यद्यपि अन्य वैज्ञानिक पत्रिकाओं के समानांत रही "विज्ञान गरिमा सिंधु" का उद्देश्य भी मूल रूप से हिंदी में वैज्ञानिक लेखन को प्रचारित—प्रसारित करना है, जिसका कार्यान्वयन व अनुपालन पत्रिका अपने प्रत्येक अंक में करती आ रही है। पत्रिका का यह अंक कई दृष्टियों से महत्वपूर्ण व संग्रहणीय है। देश के विभिन्न विश्वविद्यालयों, तकनीकी एवं वैज्ञानिक संस्थानों तथा अन्य अभियांत्रिकी संस्थानों के वैज्ञानिकों, अधिकारियों एवं सुधी प्राध्यापकों ने अत्यल्प सूचना पर न केवल अपने—अपने विषयों के महत्वपूर्ण आलेख तैयार किए हैं, बल्कि एस० आर० एम० एस० अभियांत्रिकी एवं प्रौद्योगिकी महाविद्यालय, बरेली में दिनाँक 15—16 नवम्बर को आयोजित होने वाली राष्ट्रीय संगोष्ठी में उत्साहपूर्वक इस अंक के प्रस्तुतिकरण में अपनी प्रतिबद्धता भी प्रदर्शित की है।

विज्ञान गरिमा सिंधु के गणितीय एवं यांत्रिक इंजीनियरी विशेषांक में देश के विभिन्न तकनीकी संस्थानों, विश्वविद्यालयों, महाविद्यालयों के उत्साही तथा कर्मठ शोध निपुण विद्वानों के आलेखों को शामिल

किया गया है, जिन्होंने अपने आलेखों में गणित एवं यांत्रिक इंजीनियरी के विभिन्न बिंदुओं पर पाठकों के लिए नवीन, ज्ञानवर्धक तथा उपयोगी जानकारी प्रस्तुत की है।

मैं इस अवसर पर देश के प्रतिनिधि विश्वविद्यालयों, तकनीकी, वैज्ञानिक एवं अन्य संस्थाओं के वैज्ञानिकों, शिक्षकों एवं अधिकारियों से अपेक्षा करता हूँ कि बे अपने आलेखों और रचनाओं सिहत यथा अपेक्षित प्रकाशनों में अधिक से अधिक आयोग के विशेषज्ञ विद्वानों के सहयोग से तैयार की गई प्रमाणिक व मानक शब्दावली का प्रयोग कर अपना सार्थक सहयोग प्रदान करें।

श्री राममूर्ति स्मारक अभियांत्रिकी एवं प्रौद्योगिकी महाविद्यालय बरेली में "यांत्रिकी अभियांत्रिकी में गणितीय निदर्शन, इष्टतमीकरण तकनीकों एवं तकनीकी शब्दावली के अनुप्रयोग", विषय पर राष्ट्रीय शब्दावली कार्यशाला एवं संगोष्ठी कराने का निर्णय लिया गया था तथा इसके आयोजन के अवसर पर विज्ञान गरिमा सिंधु के गणितीय — यांत्रिकी विशेषांक प्रकाशित किया जाना सुनिश्चित हुआ। सम्मिलत प्रयासों के अंतर्गत अल्प अवधि में विषय से सम्बंधित विभिन्न लेखकों को हिंदी में शोध पत्र लेख लिखने के लिए प्रोत्साहित किया गया। परिणाम आपके समक्ष है। जिसको जनवरी—मार्च 2020 अंक 112 के रूप में तैयार कर प्रकाशित किया जा रहा है यह अत्यंत हर्ष का विषय है कि यह शोध पत्रिका राष्ट्रीय संगोष्ठी के उद्घाटन के अवसर पर पाठकों के लिए उपलब्ध है। इस कार्य को पूर्ण रूप से सम्पादित कर प्रकाशन योग्य तैयार करने का उत्तरदायित्व डॉ अंजू खंडेलवाल द्वारा निर्वहन किया गया था। डॉ अंजू खंडेलवाल सह आचार्य (गणित) एस० आर० एम० एस० अभियांत्रिकी एवं प्रौद्योगिकी महाविद्यालय, बरेली एवं संपादन सिमित के प्रत्येक विशेषज्ञ, विज्ञान गरिमा सिंधु के संपादक श्री शिव कुमार चौधरी, सह संपादक, सुश्री मर्सी ललरोहलू हमार, स. वै. अ., प्रकाशन एकक प्रभारी श्री शिव कुमार चौधरी के प्रति धन्यवाद व्यक्त करता हूँ। मैं इस विशेषांक के लेखकों को भी साधुवाद देता हूँ। सुधी पाठकों के अमूल्य सुझावों व सहयोग की प्रतीक्षा रहेगी।

(प्रोफेसर अवनीश कुमार)

अध्यक्ष

वै. त. श. आयोग

संपादकीय

पत्रिका " विज्ञान गरिमा सिंधु " के 112 वें अंक को आपके समक्ष प्रस्तुत करते हुए हमें अपार हर्ष की अनुभूति हो रही है। प्रस्तुत अंक में गणित — इंजीनियरी संयुक्त विषय मुख्य रूप से सामने आया है। इस पत्रिका में विभिन्न तकनीकी लेखों व शोध—पत्रों को सम्मिलित कर संपादित करने का एक अनूठा प्रयास है।

अध्यक्ष महोदय के निदेशानुसार पत्रिका " विज्ञान गरिमा सिंधु " के 112 वें अंक हेतु गणित व इंजीनियरी विषय पर प्राप्त लेखों / शोध पत्रों का मूल्यांकन करवाने तथा संपादित करने का अवसर मिला है। यद्यपि बहुत कम समय में प्राप्त लेखों / शोध पत्रों का मूल्यांकन / संयोजन / संपादन वास्तव में कठिन कार्य था, फिर भी आयोग के अथक प्रयासों के साथ सभी लेखों / शोध पत्रों का संपादन व प्रूफ शोधन कार्य पूर्ण हुआ। परामर्श समिति द्वारा लेखों, शोध पत्रों को विषयानुसार वर्गीकरण, संयोजन तथा मूल्यांकन करने के पश्चात इस पत्रिका को सार्थक रूप दिया गया है।

प्रस्तुत पत्रिका के लेख, आयोग द्वारा एस. आर. एम. एस. अभियांत्रिकी एवं प्रौद्योगिकी महाविद्यालय, बरेली (उ.प्र.) में आयोजित गणित व इंजीनियरी विषयक संगोष्ठी में भाग लेने वाले शोध छात्रों, प्रतिभागियों तथा शिक्षकों से प्राप्त हुए हैं। हिंदी भाषा को विकसित करने के लिए आयोग के अध्यक्ष महोदय द्वारा गणित व इंजीनियरी विषयक शब्दावली प्रचार—प्रसार कार्यक्रम में हिंदी में शोध पत्र वाचन तथा शोध पत्रों को प्रकाशित करवाने का यह अभिनव प्रयास किया जा रहा है । इंजीनियरी संस्थानों में इंजीनियरी व गणित पर शोध पत्रों / लेखों को हिंदी में तैयार करना तथा संगोष्ठियों के माध्यम से प्रस्तुतीकरण एक दुर्लभ कार्य है । फिर भी शिक्षकों, शोध छात्रों ने इस विषय में लेखों / शोध पत्रों को हिंदी में प्रस्तुत करने का सराहनीय प्रयास किया है और यह भी कहना गलत नहीं होगा कि इस कार्य में शब्दावली या अन्य विषय संबंधी त्रुटियाँ मानवीय भूल के कारण हो सकती हैं। अतः पाठक गण गणित व इंजीनियरी विषय की इस शोध पत्रिका के प्रयासों को और अधिक उत्कृष्ट बनाने का सुझाव आयोग को जरूर भेजें।

प्रस्तुत पत्रिका में देश के विभिन्न विश्वविद्यालयों, महाविद्यालयों व तकनीकी संस्थानों से विद्वानों के लेख / शोध पत्र प्राप्त हुए जो इंजीनियरी, गणित व विभिन्न वैज्ञानिक क्षेत्रों से संबंधित हैं। विशेषज्ञ परामर्श समिति द्वारा मूल्यांकन के उपरांत केवल 33 आलेख प्रकाशन योग्य पाए गए जिन्हें इस पत्रिका में प्रकाशित किया जा रहा है। प्रकाशित शोध पत्रों / आलेखों में हिंदी जगत के सामने सर्वोपयोगी विज्ञान के अनेक बिंदुओं पर विचार—विमर्श किया गया है।

मैं माननीय अध्यक्ष महोदय का आभारी हूँ जिनके मार्गदर्शन व प्रोत्साहन से यह कठिन कार्य नियत समय में निष्पादित हो सका । सुश्री मर्सी ललरोहलू हमार, सहायक वैज्ञानिक अधिकारी (रसायन) के अथक एवं समग्र प्रयासों से ही इस पत्रिका की संकल्पना को मूर्त रूप मिला है ।

राष्ट्रीय महत्व की इस योजना को सफल बनाने में इससे जुड़े सभी विशेषज्ञों, भाषाविदों, शोध छात्रों व आयोग तथा एस.आर.एम.एस. अभियांत्रिकी एवं प्रौद्योगिकी महाविद्यालय, बरेली के उन सभी अधिकारियों / कर्मचारियों का योगदान प्रशंसनीय रहा है जो प्रत्यक्ष रूप में सहायक अथवा इससे संबद्ध रहे हैं। मुझे विश्वास है कि इस पत्रिका में प्रस्तुत किये गये आलेखों से हमारे पाठकों को प्रेरणा अवश्य मिलेगी।

(शिव कुमार चौधरी) सहायक निदेशक (विषय) वै त श आयोग

D. Soul

vii

विशेषांक परामर्श एवं संपादन-समिति

प्रधान संपादक

प्रोफेसर अवनीश कुमार अध्यक्ष

संपादक

श्री. शिव कुमार चौधरी सहायक निदेशक (विषय)

सह संपादक

सुश्री मर्सी ललरोहलू ह्मार, स. वै. अ. (रसायन)

2.

- प्रो. जी. सी. शर्मा,
 गणित विभाग,
 डॉ.बी.आर. अम्बेडकर विश्वविद्यालय, आगरा
 - डॉ.बी.आर. अम्बेडकर विश्वविद्यालय, आगरा एस. आर. एम. एस. अभियांत्रिकी एवं प्रौद्योगिकी महाविद्यालय, बरेली 243202
- डॉ. गजेन्द्र प्रताप सिंह, सहायक प्रोफेसर, संगणकीय एवं समेकित विज्ञान संस्थान जवाहर लाल नेहरू विश्वविद्यालय, नई दिल्ली
- डॉ. सुनीत सक्सेना,
 सहायक प्रोफेंसर (गणित विभाग),
 एस. आर. एम. एस. अभियांत्रिकी एवं प्रौद्योगिकी
 महाविद्यालय, बरेली 243202

डॉ. अंजू खंडेलवाल,

सह . प्रोफेसर (गणित विभाग),

- श्री आशीष अग्रवाल,
 सहायक प्रोफेसर,
 कंप्यूटर साइंस एवं इंजीनियरिंग विभाग,
 एस. आर. एम. एस. अभियांत्रिकी एवं प्रौद्योगिकी
 महाविद्यालय, बरेली 243202
- श्री आशीष कुमार,
 सहायक प्रोफेसर,
 यांत्रिक अभियांत्रिकी विभाग
 एस. आर. एम. एस. अभियांत्रिकी एवं प्रौद्योगिकी
 महाविद्यालय, बरेली 243202ं
- श्री अश्वनी कुमार सहायक प्रोफेसर, यांत्रिक अभियांत्रिकी विभाग एस. आर. एम. एस. अभियांत्रिकी एवं प्रौद्योगिकी महाविद्यालय, बरेली – 243202
- श्री पुष्पेंद्र शर्मा, उपमहाप्रबंधन (सेवानिवृत्त), एन.बी.सीसी (इण्डिया लि.मी.), गाजियाबाद — 201010

विज्ञान गरिमा सिंधु

हिंदी में वैज्ञानिक एवं तकनीकी लेखन की स्तरीय त्रैमासिकी अंक -112, जनवरी-मार्च 2020 (ISSN: 2320-7736)

प्रधान संपादक

प्रोफेसर अवनीश कुमार अध्यक्ष

संपादक

श्री. शिव कुमार चौधरी सहायक निदेशक (विषय)

सह संपादक

सुश्री मर्सी ललरोह्लू ह्यार स.वै.अ. (रसायन)

प्रकाशन- मुद्रण व्यवस्था

श्री. शिव कुमार चौधरी सहायक निदेशक (विषय)

बिक्री एवं वितरण

श्री जयसिंह रावत स.वै.अ. (इलेक्ट्रोनिक्स)

संपर्क सूत्र

(संपादक)

"विज्ञान गरिमा सिंधु"

वैज्ञानिक तथा तकनीकी शब्दावली आयोग पश्चिमी खंड.—7 आर. के. पुरम, नई दिल्ली —110066

अनुक्रम

अनुक्रम			2004
अनुक्रम	शीर्षक	लेखक	पृ० संo
1	विद्युत वाहनो में बेयरिंग आदि के यांत्रिक दोषों से सुरक्षा हेतु संयंत्र	डॉ. क्षितिज सिंघल, डॉ. अमित सक्सेना, डॉ. राजुल मिश्रा	1-6
2	पंक्ति निदर्श के अंतर्गत स्मार्ट नगरों के लिए यातायात प्रबंधन रणनीतियाँ	जितेंद्र कुमार, विकास शिंदे	7-15
3	ब्लॉकचेनः क्रिप्टो ग्राफिकीय डिजिटल विकेंद्री कृत प्रौद्योगिकी	डॉ. अंजू खंडेलवाल, प्रो. अवनीश कुमार	16-26
4	असमधात प्वासाँ प्रक्रिया के माध्यम से सॉफ्टवेयर प्रणाली विश्वसनीयता विकास मॉडल	डॉ. मधु जैन	27-38
5	ब्रॉड बैंड बेतार अनुप्रयोग के लिए सूक्ष्म पट्टी प्रेषित आयताकार परावैद्युत अनुनाद एंटीना	सोवन मोहंती, बैबस्वता मोहपात्रा	39-51
6	सूक्ष्म जाल के लिए संकर प्रकाश वोल्टीय—डीजल प्रणाली के अधिकतम शक्ति बिंदु मार्गन पर समीक्षा	डॉ. अंजू खंडेलवाल, अनामिका गंगवार, नाजिया परवीन	52-63
7	जीवाण्विक मस्तिष्कावरण शोध के दौरान प्रमस्तिष्कीय शिरिकाओं में रक्त प्रवाह पर गणितीय निदर्श	वीरेंद्र उपाध्याय, काशी प्रसाद बर्रोह	64-77
8	चलती सतहों पर सौर विकिरण की गणना के लिए व्यापक गणितीय मॉडल का विकास	अन्तरिक्ष गुप्ता, आकृति निगम	78-86
9	बूस्ट परिवर्तक में प्रयुक्त विभिन्न सांस्थितियों की समीक्षा	विनोद श्रीवास्तव, अभिषेक कुमार गुप्ता	87—95
10	अविश्वसनीय विनिर्माण प्रणालियों की अनुरक्षणीयता और अतिरिक्तता	डॉ. मधु जैन, प्रों. जी. सी शर्मा	96-110
11	बहु अवरोधित दायीं धमनी में रक्त प्रवाह के स्वमावः संगणकीय द्रव गतिशीलता विश्लेषण	अग्रज गुप्ता, डॉ. गजेन्द्र प्रताप सिंह	111—121
12	मोसफेट निदर्शन पर एक समीक्षा पत्र		122-126
13	जिंक ऑक्साइड के नैनो कणों का संश्लेषण और अभिलक्षणन	डॉ. मुकेश उपाध्याय	127—131
14	मोबाइल एड—हॉक नेटवर्क में विभिन्न मार्गन प्रोटोकॉल की स्वीकृति	कुमारी हेमलता, शाहजहां अली	132—139
15	बेतार संवेदक नेटवर्क के अनुप्रयोगों व सुरक्षा मुद्दे : एक सर्वेक्षण	नरेंद्र पाल सिंह, भावेश गुप्ता	140—146
16	क्षय रोग में नैदानिक निदान प्रक्रिया का पेट्री नेट द्वारा निदर्शन	डॉ. गजेन्द्र प्रताप सिंह, माधुरी झा, ममतेश सिंह	147—152
17	उप—अनुबंध मशीन और उनकी अनुरक्षण नीतियों की मदद से उत्पादन दर में सुधार	डॉ. अजय कुमार पगारे, मोहम्मद सलमान इलाही	153—157
18	यांत्रिकी अभियांत्रिकी तथा उत्पाद विनिर्माण में कैनबैन विधियों का उपयोग लाभ एवं अवसर	शिवांगी अग्रवाल, आशीष अग्रवाल	158—163

इस पत्रिका में प्रकाशित लेखों, अभिव्यक्त विचारों आदि से वैज्ञानिक तथा तकनीकी शब्दावली आयोग, मानव संसाधन विकास मंत्रालय या संपादक का सहमत होना आवश्यक नहीं है। यह पत्रिका वैज्ञानिक एवं तकनीकी शब्दावली आयोग द्वारा निर्मित शब्दावली के प्रचार—प्रसार के साथ हिंदी में वैज्ञानिक लेखन को प्रोत्साहित करने के लिए त्रैमासिकी के रूप में प्रकाशित की जाती है।

विज्ञान गरिमा सिंधु

हिंदी में वैज्ञानिक एवं तकनीकी लेखन की स्तरीय त्रैमासिकी अंक -112, जनवरी-मार्च 2020 (ISSN: 2320-7736)

प्रधान संपादक

प्रोफेसर अवनीश कुमार अध्यक्ष

संपादक

श्री. शिव कुमार चौधरी सहायक निदेशक (विषय)

सह संपादक

सुश्री मर्सी ललरोह्लू ह्यार स.वै.अ. (रसायन)

प्रकाशन– मुद्रण व्यवस्था

श्री. शिव कुमार चौधरी सहायक निदेशक (विषय)

बिक्री एवं वितरण

श्री जयसिंह रावत स.वै.अ. (इलेक्ट्रोनिक्स)

संपर्क सूत्र

(संपादक)

"विज्ञान गरिमा सिंधु"

वैज्ञानिक तथा तकनीकी शब्दावली आयोग पश्चिमी खंड.—7 आर. के. पुरम, नई दिल्ली —110066

19	इमेज प्रोसेसिंग तकनीक द्वारा पौधों में रोग के परीक्षण और उसके निदान	प्रियंका प्रधान, डॉ. ब्रजेश कुमार	164-173
20	पीलिया के दौरान केशिका में दो चरण यकृत रक्त प्रवाह की गणितीय निदर्शन और चित्रमय प्रस्तुति	रिजवान अहमद खान, डॉ. अनिल अग्रवाल, डॉ. वी. उपाध्याय	174—185
21	तागुची तकनीक का उपयोग करके घर्षण विप्लव प्रसंस्करण के प्राचलों की इष्टतमताः एक समीक्षा	अश्वनी कुमार, प्रों. आर अस जादौन	186-194
22	मुरादाबाद में कांस्य उद्योग में प्रयुक्त होने वाली कोयला भट्टी से उत्सर्जित विषाक्त वाष्प से सुरक्षा संयंत्र इकाई	डॉ. राजुल मिश्रा, डॉ. क्षितिज सिंघल, डॉ. अमित सक्सेना	195-200
23	बिनौला तेल को वैकल्पिक ईधन के रूप में प्रयोग करने पर संपीड़न प्रज्वलन इंजन के लिए अंतःक्षेपण दाब का इष्टतमीकरण	इनायत हुसैन, शुमम मिश्रा	201-210
24	आंकड़ा भंडार गृह के उपयोग से उच्च शिक्षा संस्थानों में ई—गवर्नेन्सकी प्रगति	डॉ. आशुतोष पाण्डेय, कविता पाण्डेय, अंकुर कुमार	211-218
25	सूक्ष्म—पट्टी रेखा प्रदत्त बेलनाकार परावैद्युत अनुनादक एंटीना का विश्लेषण	अलीना खान, सोवन मोहंती, बैबस्वता मोहपात्रा	219-224
26	विभिन्न तनाव दरों पर कार्बन मैंगनीज – 440 ऑटोमोटिव इस्पात के यांत्रिकी व्यवहार का प्रयोगात्मक अध्ययन	अवनीश कुमार मिश्रा	225-235
27	उच्च गति वाली रेलमार्ग पट्टिका—ए के प्रारूप तथा गतिशील व्यवहार की समीक्षा वाष्प संपीडन प्रशीतन प्रणाली के प्रदर्शन और हानि	यामिका पटेल, पारुल दीक्षित	236-243
28	पर TiO2 + R134 नैनो प्रशीतक के प्रभावों का प्रायोगिक अध्ययन	सांत्वना मिश्र, विशाल सक्सेना	244-259
29	कृत्रिम प्रतिरक्षा प्रणाली एल्गोरिथ्म के प्रयोग से बहु–मशीन लचीली निर्माण प्रणालियों में मशीनों और उपकरणों के युग्मत नियोजन के लिए इष्टतमीकरण	अनुज गंगवार, अश्वनी कुमार	260-270
30	घर्षण वेल्डिंग के माध्यम से असमान सामग्रियों की वेल्डिंगः एक समीक्षा	सय्यद आकिब अली, डॉ. रविंद्र कुमार	271-281
31	2025 तक भारत में नवीकरणीय ऊर्जा स्रोत के लिए दृष्टिकोण	अनुज कुमार गुप्ता, आशीष कुमार	282-291
32	जैव निम्ननीय पॉलिमर की आवश्यकता	अभिषेक विशष्ठ, विनीत कुमार सोनी, प्रतीक कुमार, अश्वनी कुमार	292-294
33	पेल्टियर शीतक यंत्र की योजना और निर्माण	दिव्यांशु तिवारी, आशीष कुमार, निखिल ताटक	295-299

इस पत्रिका में प्रकाशित लेखों, अभिव्यक्त विचारों आदि से वैज्ञानिक तथा तकनीकी शब्दावली आयोग, मानव संसाधन विकास मंत्रालय या संपादक का सहमत होना आवश्यक नहीं है। यह पत्रिका वैज्ञानिक एवं तकनीकी शब्दावली आयोग द्वारा निर्मित शब्दावली के प्रचार—प्रसार के साथ हिंदी में वैज्ञानिक लेखन को प्रोत्साहित करने के लिए त्रैमासिकी के रूप में प्रकाशित की जाती है।

विद्युत वाहनो में बेयरिंग आदि के यांत्रिक दोषों से सुरक्षा हेतु संयंत्र

डॉ. क्षितिज सिंघल

इलेक्ट्रॉनिक्स और संचार इंजीनियरिंग विभाग एम आई टी, मुरादाबाद

डॉ. अमित सक्सेना

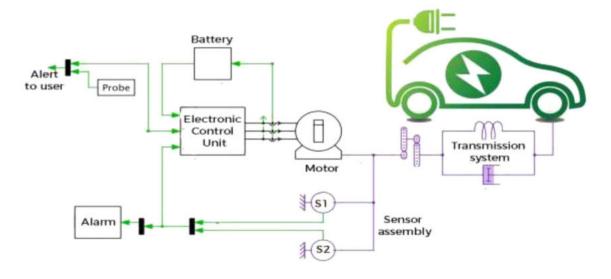
डॉ. राजुल मिश्रा

इलेक्ट्रॉनिक्स और संचार इंजीनियरिंग विभाग एम आई टी, मुरादाबाद विद्युतीय अभियांत्रिकी विभाग एम आई टी, म्रादाबाद

सार: जैसा कि हम सब जानते हैं कि आने वाले समय में, भारत के प्रधानमंत्री जी की नई नीतियों के अनुसार वर्ष 2023 तक सभी वाहन, विद्युत वाहनों से बदल दिए जाएंगे। इन विद्युत वाहनों में सामान्यतः इस्तेमाल किए जाने वाले आंतरिक दहन इंजन के स्थान पर विद्युत मोटर इस्तेमाल किये जाएंगे। आगे आने वाले समय में इन मोटरों की देखभाल एव रखरखाव अनुसंधान का एक बहुत बड़ा विषय है। यह अनुसंधान इन मोटरों में होने वाली यांत्रिक खराबियों को दूर करने के लिए एक संयंत्र का प्रस्ताव रखता है। इस संयंत्र के प्रयोग से न केवल समय से मोटर में होने वाली बेयरिंग खराबियों का पता चलेगा बल्कि इन खराबियों की वजह से होने वाली परेशानियों से भी सुरक्षा की जा सकती है। इस अनुसंधान में एक नवीन तकनीक का इस्तेमाल किया गया है जिसमे संवेदध द्वारा बेयरिंग में टर्मिनल पेटी (बॉक्स) में और अन्य मोटर को कार्यान्वित करने के लिए प्रयोग में आने वाले उपकरणों की किमयों का समय से पता किया जा सकता है।

कुंजी शब्द: ई-वाहन, आंतरिक दहन इंजन, मोटर

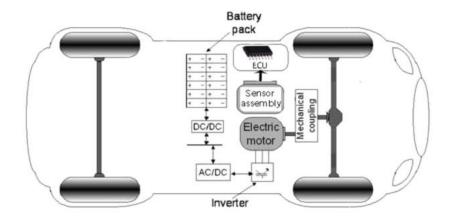
प्रस्तावना


जैसा कि हम जानते हैं माननीय प्रधानमंत्री श्री नरेंद्र मोदी जी के अनुसार आने वाले समय में सड़क पर चलने वाले सभी वाहन विद्युत वाहनों में बदल दिए जाएंगे और वर्ष 2023 तक एक भी वाहन आंतरिक दहन इंजन पर कार्य नहीं करेगा। इसी क्रम में सरकार ने विद्युत वाहनों पर वस्तु

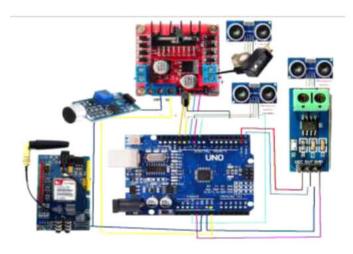
तथा सेवा कर में कटौती करने का बड़ा फैसला किया है। यह फैसला इसलिए किया गया है कि जिससे आने वाले समय में विद्युत वाहनों को बढ़ावा दिया जा सके। आने वाले वर्षों में ऑटो क्षेत्र में विद्युत वाहनों का ही दबदबा रहेगा। इसे देखते हुए ऑटो उद्योग भी अब इस ओर ज्यादा ध्यान लगा रहे हैं। बेशक विद्युत वाहनों का प्रयोग देश में तेजी से बढ़ रहे प्रदूषण पर लगाम लगाने का काम भी करेगा। जैसे कि हर चीज के दो पहलू होते है, एक पक्ष में और एक विपक्ष में। ठीक इसी प्रकार विद्यूत वाहनों के क्छ फायदे हैं और क्छ न्कसान भी हैं। सबसे बड़ा विद्यूत वाहन का फायदा है प्रदूषण से आजादी। पेट्रोल और डीजल वाहनों से निकलने वाले धुएँ से होने वाले प्रदूषण के स्थान पर विद्युत वाहनों का चलना ही बेहतर माना जा रहा है। क्योंकि इनके इस्तेमाल से प्रदूषण नहीं होता और वातावरण स्वच्छ रहता है । इसके अलावा वातावरण में होने वाले ध्वनि एवं जाम की समस्या से भी निजात मिलेगी क्योंकि आजकल सड़क पर ट्रैफिक की समस्या से जूझना ही पड़ता है। विद्युत वाहन जहां यातायात पर असर डालता है वहीं विद्युत वाहन में प्रयुक्त मोटर आंतरिक दहन इंजन की त्लना में ज्यादा शोर नहीं करते हैं। क्योंकि इसके अंदर बिजली से चलने वाला मोटर होगा। यह आर्थिक रूप से भी सहायक होगा क्योंकि इसमें प्रयुक्त विद्युत मोटर को कम पैसे में चार्ज करके ज्यादा दूर तक चलाया जा सकेगा [1, 2, 3]। इसके अलावा इसकी बार-बार मरम्मत करने की भी जरूरत नहीं पड़ेगी । क्योंकि इसमें इंजन तेल (ऑयल), चिकनाई (ल्ब्रिकेशन) इत्यादि की आवश्यकता नहीं होती इसलिए इसका रख रखाव काफी सस्ता है। इनके अलावा विद्युत वाहनों के कुछ नुकसान भी है जैसे कि लंबी दूरी तय करनी है तो ज्यादा से ज्यादा बैटरी आवेशित करने की जरूरत होती है [4, 5]। लंबी दूरी तय करने के लिए बीच-बीच में विद्युत वाहन को आवेशित करने की भी आवश्यकता होती है । इसको आवेशित करने में काफी समय लग जाता है जिसमें काफी समय खराब होता है। इसके अलावा किसी भी प्रकार की खराबी आ जाती है तो इसके लिए अभी बाजार में मिस्त्री उपलब्ध नहीं है जो कि इसके अंदर आई खराबी का अनुमान लगाकर वाहन को सही कर दे।

2. तकनीकी विवरण

प्रस्तावित कार्य में विद्युत वाहनों में प्रयुक्त होने वाले मोटर के निकट एक ऐसा संयंत्र लगाया जाएगा जो कि न केवल विद्युत वाहनों में प्रयुक्त होने वाले मोटरों में होने वाली खराबी को समय से पहचान लेगा बल्कि चालक को उन किमयों के बारे में पूर्व संकेत भी देगा। प्रस्तावित संयंत्र की


एक इकाई में माइक्रोफोन एवं स्पंदन संवेदक लगाए जाएंगे जो कि मोटर के निकट में होने वाले स्पंदनों को एवं माइक्रोफोन उसमें होने वाली नई तरह की आवाजों की पहचान करके आगे इलेक्ट्रॉनिक नियंत्रण इकाई पर भेजेगा [6, 7, 8]। यह इलेक्ट्रॉनिक नियंत्रण इकाई आधुनिक माइक्रो प्रोसेसर चिप के दवारा संचालित इकाई होगी, जिसमें कि माइक्रो प्रोसेसर इस संवेदक इकाई से आने वाली संचार संकेत की प्रक्रिया करेगा और यह अनुमान लगाएगा कि मोटर की जो आवाज आ रही है वह पूर्व में संचय की गई अभिलेखन (रिकॉर्डिंग) के अनुरूप है या नहीं। कहीं इसका स्तर पुरानी आवाज के स्तर से ऊपर तो नहीं है। अगर यह स्तर पुरानी रिकॉर्ड की गई आवाज के स्तर से ऊपर है तो यह एक खराबी का संकेत है। इलेक्ट्रॉनिक नियंत्रण इकाई इस संकेत को जीएसएम माङ्यूल के माध्यम से चालक के स्मार्टफोन पर भी देगी एवं वाहन के घटी पट्ट (डैशबोर्ड) पर एक संकेत भी अंकित करेगी। जिससे कि वाहन चालक को यह पता चल जाएगा कि मोटर में या तो बेयरिंग के कारण या नट बोल्ट ढीले होने के कारण अत्यधिक आवाज उत्पन्न हो रही है। जो कि किसी खराबी का संकेत है। इसी प्रकार से टर्मिनल पेटी(बॉक्स) के पास लगा हुआ संवेदक भी यही बात इलेक्ट्रॉनिक नियंत्रण इकाई को संकेत के माध्यम से बताएगा। जिसे कि इलेक्ट्रॉनिक नियंत्रण प्रक्रिया करके पता लगा लेगी कि टर्मिनल पेटी(बॉक्स) पर कोई संपर्क (कनेक्शन) ढीला अथवा टूट तो नहीं गया है। यह बात इलेक्ट्रॉनिक नियंत्रण इकाई दवारा जीएसएम माड्यूल से चालक को प्रसारित कर दी जाएगी एवं वाहन के घटी पट्ट (डैशबोर्ड) पर भी अंकित कर दी जाएगी। चित्र एक प्रस्तावित संयंत्र का वर्णन करता है।

चित्र 1: प्रस्तावित संयंत्र का खंड (ब्लॉक) आरेख


निदर्शन की तकनीक

ज्यादातर विद्युत वाहनों को चलाने के लिए इंजन के स्थान पर या तो प्रेरक मोटर इस्तेमाल किया जाता है या फिर ब्रशलैस डीसी मोटर इस्तेमाल किया जाता है। चित्र दो भविष्य में इस्तेमाल किए जाने वाला विद्युत वाहन दर्शित करता है।

चित्र 2: भविष्य में इस्तेमाल किए जाने वाला विद्युत वाहन

चित्र 3 विद्युत वाहनों में इस्तेमाल किए जाने वाले प्रेरक मोटर एवं ब्रशलैस डीसी मोटर को प्रदर्शित करता है। विद्युत वाहन के प्रयोग के बढ़ने के साथ इनमें होने वाली खराबी बढ़ने की संभावनाएं भी नकारी नहीं जा सकती [9, 10]। प्रस्तावित कार्य विद्युत वाहन में इस्तेमाल किए जाने वाले मोटर की खराबियों का पहले से ही अनुमान लगा लेगा एवं चालक के पास उन खराबियों का पूर्व संकेत भी भेज देगा।

चित्र 3: प्रस्तावित संयंत्र

4. परिणाम

प्रस्तावित संयंत्र बनाने के बाद उसके ऊपर प्रयोग करके आने वाले परिणामों का विश्लेषण किया जाएगा कि मोटर के निकट लगाए गए पराश्रत्य (अल्ट्रासोनिक) संवेदक, माइक्रोफोन या ध्वनिग्राही एवं स्पंदन संवेदक सही से काम कर रहे थे । चित्र 3 माइक्रोफोन एवं स्पंदन संवेदक दर्शाता है। इसी प्रकार टर्मिनल पेटी (बॉक्स) के निकट लगाया गया संवेदक भी सही प्रकार से कार्य करेगा।

निष्कर्ष

आने वाले समय में विद्युत वाहनों का चलन बहुत बढ़ जाएगा। इसके साथ ही मोटर के खराब होने के कारण सड़क पर होने वाली दुर्घटनाओं की संभावनाएं भी बढ़ जाएगी एवं मोटर के खराब होने के कारण यात्रियों एवं चालकों के यात्राओं में बाधा आने की सम्भावनाएँ भी बढ़ जाएगी। प्रस्तावित संयंत्र ना केवल विद्युत वाहन के मोटर में उत्पन्न होने वाली खराबियों को पहले से ही पहचान लेगा बल्कि चालक को इन खराबियों का पूर्व संकेत भी देगा। प्रस्तावित संयंत्र आने वाले समय में विद्युत वाहनों के लिए एक अनिवार्य संयंत्र के रूप में सामने आएगा। हालांकि अभी इस संयंत्र को पूर्णतया तैयार करने में और शोध की आवश्यकता है। भविष्य में इस पर और कार्य करके मोटर की खराबियों से उत्पन्न होने वाली ध्वनियों का आँकड़ा कोष बनाकर अलग-अलग खराबियों का चित्रण किया जा सकता है। इलेक्ट्रिक वाहनों का भविष्य ऐसे ही संयंत्रों की कीमत तथा उपयोग पर निर्भर करता है जिसमें उच्च विशिष्ट दर्जे की तकनीक का इस्तेमाल किया गया हो। जिससे कि विद्युत वाहन का लंबा जीवन काल हो तथा अन्य पहलुओं जैसे की मोटर में आने वाली खराबियों, मोटर, चार्जर, बैटरी इत्यादि में आने वाली खराबियों का समय से पता लग जाए। चालक को उनकी पूर्व सूचना दे दी जाए जिससे कि चालक इन खराबियों को समय पर मरम्मत केंद्र पर जाकर दूर करा ले।

संदर्भ

- [1] Ali R, and Mohamed R and Sung H. K., An Integrated Fault Detection and Identification System for Permanent Magnet Synchronous Motor in Electric Vehicles, International Journal of Fuzzy Logic and Intelligent Systems, Volume 18, pp-20-28, 2018. Doi: 10.5391/IJFIS.2018.18.1.20.
- [2] Gómez-Peñate S., López-Estrada F. R., G., et al., Sensor Fault Diagnosis Observer for an Electric Vehicle Modeled as a Takagi-Sugeno System, Journal of Sensors, vol. 2018, Article ID 3291639, 9 pages, 2018. https://doi.org/10.1155/2018/3291639.

- [3] Zhang L., Xianjin H., Yang, Chen, Xu, Jie, Liu, Summarize of Electric Vehicle Electric System Fault and Fault-tolerant Technology, TELKOMNIKA Indonesian Journal of Electrical Engineering Vol.12, No.2, February 2014, pp. 1094 - 1099 DOI: http://dx.doi.org/10.11591/telkomnika.v12i2.4410.
- [4] Fei Lin, K. T. Chau, C. C. Chan, Chunhua Liu, "Fault Diagnosis of Power Components in Electric Vehicles", Journal of Asian Electric Vehicles, Volume 11, Number 2, pp. 1659-1666, December 2013.
- [5] A.Tashakori and M. Ektesabi, "Fault diagnosis of in-wheel BLDC motor drive for electric vehicle application," 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, 2013, pp. 925-930. doi: 10.1109/IVS.2013.6629585
- [6] Jiyu Zhang, Giorgio Rizzoni, "Functional Safety of Electrified Vehicles Through Model-Based Fault Diagnosis", IFAC-Papers OnLine, Volume 48, Issue 15, 2015, Pages 454-461. https://doi.org/10.1016/j.ifacol.2015.10.065
- [7] Y. Song and B. Wang, "A hybrid electric vehicle powertrain with fault-tolerant capability," 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, 2012, pp. 951-956. doi: 10.1109/APEC.2012.6165933
- [8] Daniel Wanner and Lars Drugge and Annika Stensson Trigell, "Fault classification method for the driving safety of electrified vehicles", International Journal of Vehicle Mechanics and Mobility, Volume 52, 2014 -Issue 5.
- [9] Sang Chon, Jon Beall, "Intelligent battery management and charging for electric vehicles", Texas Instruments, available online at: http://www.ti.com/lit/wp/spry304a/spry304a.pdf
- [10] S. M. Salamati, C. S. Huang, B. Balagopal and M. Chow, "Experimental battery monitoring system design for electric vehicle applications," 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), Hamilton, 2018, pp. 38-43. doi: 10.1109/IESES.2018.8349847

पंक्ति निदर्श के अंतर्गत स्मार्ट नगरों के लिए यातायात प्रबंधन रणनीतियाँ

जितेंद्र कुमार

अनुप्रयुक्त गणित विभाग माधव प्रौद्योगिकी और विज्ञान संस्थान ग्वालियर

ई मेल: jkmuthele@gmail.com

विकास शिंदे

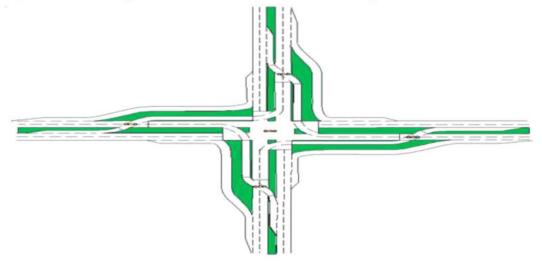
अनुप्रयुक्त गणित विभाग माधव प्रौद्योगिकी और विज्ञान संस्थान ग्वालियर

ई मेल: v_p_shinde@rediffmail.com

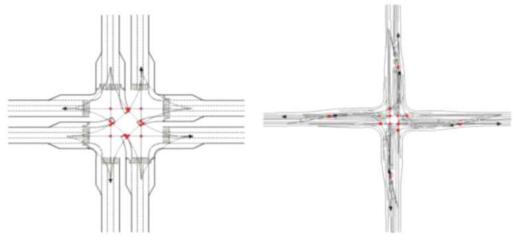
सार: इस शोध-पत्र में, हमने पंक्ति निदर्शों के साथ यातायात नियंत्रण के लिए रणनीति पर चर्चा की है और एक बहु आयामी यातायात के प्रवाह सतत प्रवाह चौराहा योजना का देरी को कम करने और यातायात क्षमता में वृद्धि के तहत विश्लेषण किया है। अलग -अलग समयों में पंक्ति निदर्श के द्वारा प्राप्त किए गए प्रदर्शन के उपायों (निकाय और पंक्ति में वाहन की संख्या, निकाय में बिताए गए समय, पंक्ति में प्रतीक्षा समय और यातायात तीव्रता आदि) का अध्ययन किया गया है। हमने विषम यातायात प्रवाह स्थितियों के तहत और MATLAB का उपयोग करके सतत प्रवाह चौराहे का मूल्यांकन किया है। परिणामों के विश्लेषण से पता चलता है कि सतत प्रवाह चौराहा योजना पारंपरिक यातायात योजना और स्मार्ट शहरों की तुलना में निश्चित रूप से अधिक सक्षम होगी।

कुंजी शब्दः सतत प्रवाह प्रतिच्छेदन, पंक्ति निदर्श, यातायात तीव्रता, द्विगर्मीय डिजाइन

प्रस्तावना


भारतीय नगरों और अन्य देशों के नगरों का सड़क यातायात तेजी से बढ़ रहा है और यातायात विभिन्न वाहनों के आ जाने के कारण और भी विषम हो रहा है। अपर्याप्त जगह के कारण शहरी परिवहन बुनियादी ढांचे का विकास संभव नहीं है, यातायात की समस्या के वैकल्पिक समाधान खोजने की तत्काल आवश्यकता है। उपलब्ध बुनियादी ढांचे (सड़क स्थान) का इष्टतम उपयोग और पुनर्विकास इस तरह से किया गया है कि सड़क की संवाहन क्षमता बढ़ाई गई है। यह निरंतर प्रवाह प्रतिच्छेदन (CFI) अवधारणा द्वारा प्राप्त किया जा सकता है। यह एक अभिनव यातायात संकेत प्रतिच्छेदन है। सीएफआई की अवधारणा को हाल ही में ग्रेड और ग्रेड से अलग प्रतिच्छेदन पर पारंपरिक रूप से वैकल्पिक प्रतिच्छेदन के डिजाइन के रूप में माना गया है। यह एक नए क्रॉस ओवर प्रतिच्छेदन पर मुख्य प्रतिच्छेदन से दूर होने के लिए एक या अधिक विरोधाभासी गतियों को सतत प्रवाह चौराहे द्वारा मुख्य चौराहे को सहज बनाता है, जो केंद्रीय नोड पर संघर्षों की संख्या को कम करता है और अधिक जगह मांगे बिना क्षमता को भी बढ़ाता है। यह अध्ययन सीएफआई के मूल्यांकन के साथ विषम यातायात प्रवाह की स्थिति से संबंधित है। कई शोधकर्ताओं द्वारा यातायात प्रवाह की समस्याओं को संबोधित किया गया है। वेदगिरी और दयादार [11] ने संगणक अनुकरण का उपयोग करते हुए विषम स्थितियों के तहत निरंतर प्रवाह प्रतिच्छेदन का अध्ययन किया। जगन्नाथ और बारेड [5] ने

वाहन यातायात प्रदर्शन के लिए अनुकूलित आधार संकेत समय के साथ सीएफआई के लिए पैदल यात्री पहुंच और संबंधित पैदल यात्री संकेत समय प्रदान करने के लिए डिजाइन पद्धितियों पर चर्चा की। रीड और हमर [8] पारंपरिक और अपरंपरागत डिजाइनों के यात्रा समय की तुलना करने के लिए अलग-अलग आकारों के सात मौजूदा प्रतिच्छेदन से गित आंकड़ों किया है। वेदिगिरी और दयादार [1] ने अलग-अलग ग्रेड के बीच और ग्रेड प्रतिच्छेदन पर एक उप-स्तर के साथ विस्थापित दाएं-मोड़ प्रतिच्छेदन को माना। वांग आदि [9] ने वाहन पंक्ति प्रणाली प्रतीक्षा समय को कम करने के लिए वाहन पंक्ति का वर्णन किया और प्रतिच्छेदन पर वाहन पंक्तियों की समस्या को हल करने के तरीकों की पड़ताल की। निको आदि [3] ने पंक्ति निदर्श का उपयोग कर यातायात प्रवाह पर चर्चा की। इगलहार्ट और विट [10] ने भारी यातायात भीड़ एकाधिक चैनल पंक्ति निदर्श का उपयोग कर प्रवाह का अध्ययन किया।


इस शोध-पत्र में, हमने सतत प्रवाह प्रतिच्छेदन (CFI) के लिए पंक्ति निदर्श के साथ यातायात नियंत्रण के लिए रणनीति को प्रस्तुत किया है। शेष शोध-पत्र ,हमने निम्नानुसार व्यवस्थित किया है: अनुच्छेद-2 में, सतत प्रवाह प्रतिच्छेदन और इसके प्रकार का वर्णन किया गया है। अनुच्छेद 3 और 4 में,एकल और बहु परिसेवक के लिये पंक्ति निर्दशों और प्रदर्शन उपायों का वर्णन किया गया है। अनुच्छेद 5 में, द्विमार्ग या प्रतिच्छेदन के लिए CFI योजना का वर्णन किया गया है। अनुच्छेद 6 में, हमने विभिन्न सत्र (सुबह, दोपहर और शाम) के साथ संख्यात्मक निदर्शन किया है और यातायात प्रणाली के प्रदर्शन के अनुरूप प्राचलों के प्रभाव का विश्लेषण किया है। अंत में, अनुच्छेद 7 प्राप्त किए गए परिणामों को सारांशित करता है और निष्कर्ष निकालता है।

2. यातायात के प्रवाह का विवरण

सतत प्रवाह चौराहे (CFI) को भारत और अन्य देशों में कई स्थानों पर लागू किया गया है। CFI की मुख्य विशेषता रस्तों के बीच संघर्ष को खत्म करने की है। हालाँकि, यह चार अतिरिक्त संकेत वाले प्रतिच्छेदन चौराहों को बनाता है ताकि प्रत्येक चौराहे के साथ एक बाएं मोड़ प्रतिच्छेदन की सुविधा हो सके। ये अनूठी ज्यामितीय सुविधा पारंपरिक चौराहे योजना की तुलना में बेहतर होती है।

चित्र 1: द्वि-पद योजना के सतत प्रवाह चौराहे

चित्र 2: परंपरागत प्रतिच्छेदन और सी एफ आई अंतराशि

तीन चित्रों में, हमने यातायात नियंत्रण को प्रदर्शित किया है, जो यातायात के प्रवार में पारंपरिक और परस्पर विरोधी बिंदुओं की संख्या को कम करने के लिए सक्षम है।

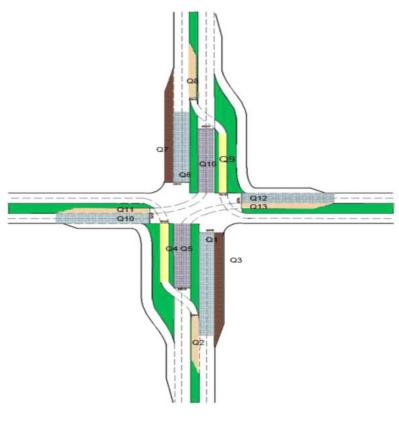
3. पंक्ति निदर्श का विवरण

पंक्ति निदर्श जीवन के सबसे अप्रिय अनुभवों में से एक है। जीवन के बहुत से क्षेत्रों में लगातार प्रतीक्षा करनी पड़ती है उदाहरण के लिए दूरभाष केंद्र में, सुपर बाज़ार में, संगणक प्रणाली और यातायात आदि में। इस शोध-पत्र में, हमने पंक्ति सिद्धांत का उपयोग करते हुए यातायात समस्या का उल्लेख अलग-अलग पंक्ति निदर्श के साथ सड़क पर वाहनों द्वारा भीड़ वाले चौराहे के लिए किया है। यहाँ हमने विभिन्न प्रकार के चौराहों का अध्ययन किया हैं।

4. पंक्ति निदर्शों की प्रदर्शन माप

एक पंक्तिबद्ध प्रणाली को चिहनित करने के लिए हमें अनुरोध सेवा समय और सेवा समयों लगा के समय की प्रायिकता गुणों की पहचान करनी होगी। आगमन प्रक्रिया को वाहनों के अंतः आगमन समय के बंटन के द्वारा अभिलसित किया जा सकता है।

तालिका 1: पंक्ति निर्दशों के तहत विभिन्न प्रदर्शन उपाय


	पंक्ति निदशौ				
कार्य विवरण	M/M/1	M/M/S			
यातायात की तीइता: (p)	$\rho = \frac{\lambda}{\mu}$	$\rho = \frac{\lambda}{S_{\mu}}$			
पंक्ति में प्रतीक्षा कर रहे वाहमाँ की औसत संख्या : (Lq)	$L_q = \frac{\rho^2}{(1-\rho)}$	$L_{q} = \frac{P_{0} \lambda \mu \rho^{3+1}}{(S-1)! (S\mu - \lambda)^{2}}$ $\mathbf{Z}_{q}^{2},$ $P_{0} = \left(\sum_{i=0}^{S-1} \frac{e^{i}}{i!} + \frac{e^{i}}{s} \left(\frac{s\mu}{s\rho - \lambda}\right)^{-1}\right)^{-1}$			
निकाय में वाहनों की औसत संख्या: (Ls)	$L_x = \frac{\lambda}{(\mu - \lambda)}$	$L_q = L_q \times \rho$			
पंक्ति में प्रतीक्षा करने वाले वाहनीं की औसत संख्याः (Wq)	$W_q = \frac{\rho}{\mu.(1-\rho)}$	$W_q = \frac{L_q}{\lambda}$			
निकाय में समय व्यतीत करने वाले वाहनीं की औसत संख्या: (Ws)	$W_s = \frac{1}{(\mu - \lambda)}$	$W_s = W_q + \frac{1}{\mu}$			

5. पंक्ति निदर्शों का उपयोग कर सतत प्रवाह चौराहे को योजित करना

इस अनुच्छेद में, हमने द्वि-पद वाले चौराहे के लिए सतत प्रवाह चौराहे को योजित किया है और विभिन्न समयों के तहत पंक्ति निदर्शों के साथ विभिन्न तरीकों के अनुरूप विभिन्न मामलों का विश्लेषण भी किया हैं।

5.1 द्वि-पद चौराहे के लिए सी एफ आई

दो पैरों वाले सी एफ आई के लिए दो अलग-अलग योजना मौजूद हैं: एक सममित आंशिक सी एफ आई, इसके दो सी एफ आई पद विपरीत दिशाओं में चल रहे हैं; और एक विषम आंशिक सी एफ आई, इसके दो सी एफ आई पद दो आसन्न दिशाओं के साथ चल रहे हैं। दोनों योजनाओं में काफी समान संरचना है। पंक्ति योगों के एक ही जोड़े का उपयोग उनके प्रदर्शन का मूल्यांकन करने के लिए किया जा सकता है। दो पद सी एफ आई के सभी संभव पथ तालिका-3 में वर्णित पंक्ति को चार जोड़ी पंक्ति में वर्णित किया गया है।

चित्र 3

प्र1: प्रमुख चौराहे पर पंक्ति के माध्यम से उत्तर की ओर;

प्र2: प्रतिच्छेदन पर उत्तर की बायें मुझने वाली पंक्ति;

प्र3: प्रमुख चौराहे पर उत्तर की ओर दायें मुड़ने वाली पंक्ति;

प्र4: प्रमुख चौराहे पर दक्षिण की बायें मुझने वाली पंक्ति;

प्र5: दक्षिण प्रतिच्छेदन पर पंक्ति के माध्यम से दक्षिण की ओर;

प्र6: प्रमुख चौराहे पर पंक्ति के माध्यम से दक्षिण की ओर;

प्र7: उत्तर प्रतिच्छेदन पर दायें मुइने वाली पंक्ति से दक्षिण की ओर;

प्र8: उत्तर प्रतिच्छेदन पर बायें मुझ्ने वाली पंक्ति से दक्षिण की ओर;

प्र9: प्रमुख चौराहे पर बायें मुड़ने वाली पंक्ति से दक्षिण की ओर;

प्र10: प्रमुख चौराहे पर पंक्ति के माध्यम से पूर्व की ओर;

प्र11: प्रमुख चौराहे पर पूर्व की ओर मुड़ने वाली पंक्ति;

प्र12: प्रमुख चौराहे पर पंक्ति के माध्यम से पश्चिम की ओर; तथा

प्र13: दक्षिण बाध्य प्रमुख चौराहे पर बाएं मुड़ने वाली पंक्ति।

इन रास्तों के आधार पर हम निम्नलिखित एसएन संयोजन बना सकते हैं।

प्रकरण I: पंक्तियों का संयोजन (प्र1, प्र6, प्र10, प्र12),

प्रकरण II: पंक्तियों का संयोजन (प्र2, प्र8, प्र11, प्र13),

> प्रकरण III: पंक्तियों का संयोजन (प्र4, प्र9),

> प्रकरण IV: पंक्तियों का संयोजन (प्र5, प्र10)

6. संख्यात्मक स्पष्टीकरण

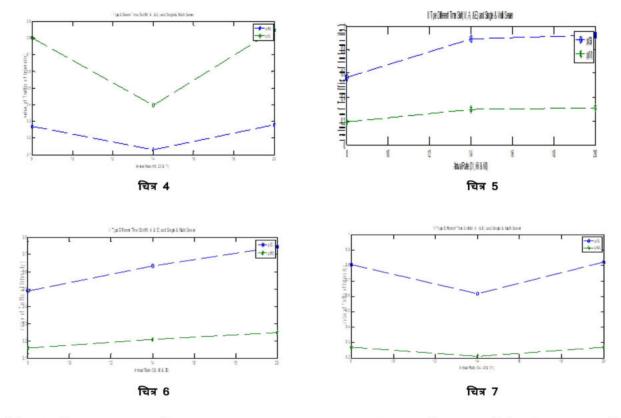
हमने निम्नितिखित गतिविधियों को विशिष्ट प्रक्रिया और कार्य माना हैं। प्रत्येक कार्य का वर्णन विशिष्ट उद्देश्यों द्वारा अलग-अलग तरीके से किया जाता है। इन गतिविधियों को पहले अनुच्छेद में वर्णित किया गया है। हमने पंक्ति निदर्शों M/M/1 और M/M/C को अलग -अलग यातायात में प्रवाह के साथ निदर्श के लिए कुछ तालिकाओं का निर्माण किया है। हमने उपरोक्त अनुच्छेद में पंक्ति निदर्शों का उपयोग कर विभिन्न प्रदर्शन के उपाय, निकाय और पंक्ति में वाहन की माध्य संख्या प्राप्त की है।

(i) पंक्ति निदर्श एकल परिसेवक (M/M/1)

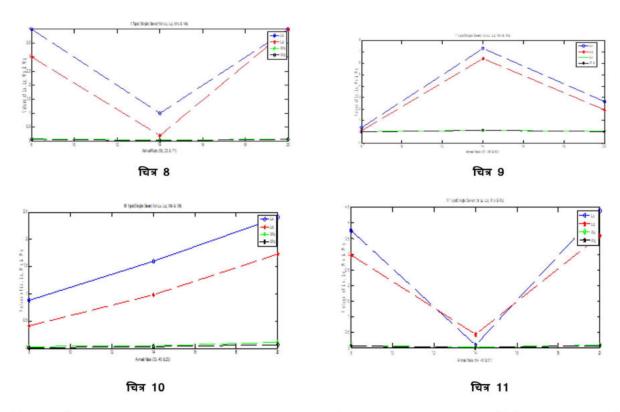
तालिका 2: द्वि-पद सी एफ आई - चौराहे

	सत्र /	आगमन		सेवा		आगमन	सेवा
स्थान	समय	वाहन	न्यूनतम	वाहन	न्यूनतम	दर	दर
1. पंक्ति निदर्श	सुबह	67	1.19	71	1.01	56	70
(प्र1, प्र6, प्र10,	दोपहर	58	2.55	62	1.07	23	58
प्र12)	शाम	82	1.16	92	1.10	71	84
2. पंक्ति निदर्श	सुबह	72	2.32	79	1.44	31	55
(प्र2, प्र8, प्र11,	दोपहर	88	1.33	92	1.25	66	74
ਸ13)	शाम	79	1.31	89	1.36	60	65
 पंक्ति निदर्श प्र4, प्र9) 	सुबह	78	2.02	84	1.04	39	80
	दोपहर	71	1.59	75	1.06	45	71
	शाम	89	3.09	95	2.45	29	39
4. पं क ्ति निदर्श	सुबह	122	2.25	135	2.02	54	67
(प्र5, प्र10)	दोपहर	104	2.3	128	1.75	45	73
	शाम	131	2.55	152	2.45	51	62

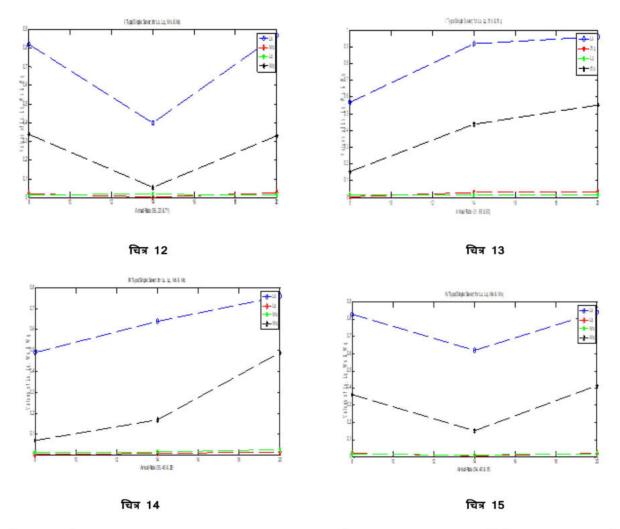
तालिका 3: द्वि-पद वाले सी एफ आई के लिए, Lq, Ls, Ws और Wq-अंतर के मान


स्थान	सम	यातायात तीवता	प्रणाली में वाहन की औसत संख्या	वाहन की औसत संख्या पंक्ति में इंतजार कर	वाहन समय की औसत संख्या प्रणाली में खर्च	वाहन की औसत संख्या कतार में प्रतीक्षा समय
1.	सुबह	0.800	4	3	0.09	0.07
पंक्ति निदर्श	दोपहर	0.397	1	0.2	0.04	0.02
(प्र1, प्र6, प्र10, प्र12)	शाम	0.845	4	4	0.08	0.07
2.	सुबह	0.564	0.37	0.10	0.03	0.008
पंक्ति निदर्श	दोपहर	0.892	7.29	6.41	0.14	0.126
(प2, प8, प11, प13)	शाम	0.923	2.65	1.92	0.06	0.043
3.	सुबह	0.488	0.88	0.41	0.03	0.01
पंक्ति निदर्श	दोपहर	0.634	1.6	0.98	0.05	0.03
(94, 99)	शाम	0.744	2.4	1.73	0.11	0.07
4. पंक्ति निदर्श (प्र5. प्र10)	सुबह	0.806	3.75	2.96	0.08	0.07
	दोपहर	0.616	0.09	0.43	0.02	0.01
	शाम	0.823	4.4	3.59	0.10	0.08

(ii) पंक्ति निदर्श बह् परिसेवक (M/M/C)


तालिका 4: द्वि-पद वाले सी एफ आई के लिए, Lq, Ls, Ws और Wq-अंतर के मान

स्थान	सत्र	यातायात तीव्रता	प्रणाली में वाहन की औसत संख्या	वाहन की औसत संख्या पंक्ति में इंतजार कर	वाहन समय की औसत संख्या प्रणाली में खर्च	वाहन की औसत संख्या पंक्ति में प्रतीक्षा समय
1. पंक्ति निदर्श	सुबह	0.27	0.82	0.019	0.015	0.338
(प्र1, प्र6, प्र10,	दोपहर	0.13	0.40	0.001	0.017	0.053
प्र12)	शाम	0.28	0.87	0.024	0.012	0.331
2. पंक्ति निदर्श	सुबह	0.19	0.57	0.005	0.018	0.156
(प्र2, प्र8, प्र11,	दोपहर	0.30	0.92	0.029	0.014	0.439
ਸ਼13)	शाम	0.31	0.96	0.033	0.016	0.553
3. पंक्ति निदर्श	सुबह	0.16	0.49	0.003	0.013	0.070
(प्र4, प्र9)	दोपहर	0.21	0.64	0.008	0.014	0.170
	शाम	0.25	0.76	0.014	0.026	0.490
4. पंक्ति निदर्श	सुबह	0.27	0.83	0.020	0.015	0.361
(प्र5, प्र10)	दोपहर	0.21	0.62	0.007	0.013	0.152
	शाम	0.27	0.84	0.021	0.017	0.414


हमने तालिका 2, 3 और 4 में विभिन्न समय सत्रों, (अर्थात सुबह, दोपहर और शाम) में वाहन आगमन के निम्नलिखित प्रतिरूप का द्वि-पद चौराहे के लिए आगमन और सेवा दर सी एफ आई का मूल्यांकन किया है। द्वि-पद चौराहे के लिए विभिन्न प्रदर्शन उपायों का मूल्यांकन किया गया है और तालिका 3 और 4 में हमने एकल और बहु परिसेवक के लिए पंक्ति निर्देशों की क्षमता माप और सेवा दर के समान निवेश आगमन दिखाया गया है।

चित्र 4 से 7 यातायात तीव्रता बनाम आगमन दर प्रकरण (एकल और बहु परिसेवक) I, II, III और IV के लिए

चित्र 8 से 11 आगमन दर बनाम Lq, Ls, Wq और Ws प्रकरण (एकल परिसेवक) I, II, III और IV के लिए

चित्र 12 से 15 आगमन दर बनाम Lq, Ls, Wq और Ws प्रकरण (बहु परिसेवक) I, II, III और IV के लिए

चित्र 4 से 15 तक, हमने विभिन्न संख्यात्मक माप के साथ विश्लेषण किया है जिसमें पंक्ति निदर्श को एकल और बहु-परिसेवक का उपयोग कराते हुए उपायों की गणना की है चित्र 4 से 7 तक , हमने यातायात की तीव्रता बनाम आगमन दर को प्रदर्शित किया है और चित्र 8 से 15 तक, हमने विभिन्न प्रदर्शन उपायों (Lq, Ls, Wq और Ws)को एकल और बहु-परिसेवक के साथ प्रदर्शित किया है।

7. निष्कर्ष

इस शोध-पत्र में, हमने निरंतर प्रवाह चौराहे के योजनयों का विश्लेषण किया है जो कम समय में भारी यातायात की मात्रा को नियंत्रित करने में सहायक होते हैं। समय दर समय में यातायात प्रवाह की जांच करने के लिए M/M/1 और M/M/C कतार तंत्र का प्रदर्शन मापा गया । प्रस्तावित अध्ययन नए निरंतर प्रवाह चौराहे (सी एफ आई) की योजना बनाने के लिए यातायात अभियंताओं के लिए उपयोगी है, जिसके माध्यम से वे भीड़-भाड़ के बिना बढ़ते यातायात प्रवाह को संभाल सकते हैं और चौराहे पर देरी को कम कर सकते हैं। इस तरह के परिणाम निश्चित रूप से आगामी स्मार्टनगरों के योजनाकारों के लिए नई दिशा या आयाम प्रदान करेंगे।

संदर्भ

- P. Vedagiri and S. Daydar (2010), "Evaluation of Displaced Right-Turn using Computer Simulation", Sustainable Urban and Transportation Planning Issues and Management Strategies (SUTRIMS-11), NIT Surat.
- C.F. Daganzo (1987), "Fundamentals of Transportation and Traffic Operations", Elsevier Science Ltd. Oxford.
- [3] V. Nico, T. V. Woensel and A. A. Verbruggen (2000), "Queuieng Based Traffic Flow Model, Transportation Research", Vol. 5, pp. 212-135.
- [4] D. Gross and C. Harris, Fundamental of Queueing theory, 3rd Edition, John Wiley, Chichester, (1998).
- [5] R. Jagannathan and J.G. Bared (2004), "Design and Operational Performance of Crossover Displaced Left-Turn Intersections", In Transportation Research Record: Journal of the Transportation Research Board, No. 1881, Transportation Research Board of the National Academies, Washington D. C., pp. 1-10.
- [6] R. L. Gordon, R. A. Reiss, H. Haenal, E. R. Case, R. L. French, A. Mohaddes and R. Wolcott (1996), "Traffic Control Systems" Handbook—Revised Edition 1996. Report FHWA-SA-95-032, FHWA, U.S. Department of Transportation.
- [7] E. H. Joseph (2000), "Unconventional Left-Turn Alternatives for Urban and Suburban Arterials -update, Transportation Research E-Circular.
- [8] J. D. Reid and E. H. Joseph (2001), "Travel Time Comparisons between Seven Unconventional Arterial Intersection Designs. In Transportation Research Record: Journal of the Transportation Research Board, No. 1751, TRB, National Research Council, Washington, D.C., pp. 56-66.
- [9] F. Wong, Y. Chuning, Y. Zhang and L. Yan (2014), "Simulation Analysis and Improvement of the Vehicle Queueing System on Intersection Based on Matlab, The open Cybernetics and Systemic journal, Vol. 8, pp. 217-223.
- [10] D. L. Iglehart and W. Witt (1970), "Multiple channel queues in heavy traffic, II: Sequences, networks and batches, Advance International APPL. Probability, Vol. 2, pp. 355-369.
- [11] P. Vedagiri and S.Daydar (2012), "Performance Analysis of Continuous Flow Intersection in Mixed Traffic Condition, ACEE International Journal on Transportation and Urban Development, Vol. 2, Issues 1, pp, 20-25.
- [12] J. Kumar and V. Shinde (2019), "Study of Traffic Congestion Flow using Queueing Model", Journal of Jnanabha, Vol. 49, Issue 1, pp. 11-25.

ब्लॉकचेन:

क्रिप्टोग्राफिकीय डिजिटल विकेंद्रीकृत प्रौद्योगिकी

डॉ. अंजू खंडेलवाल

गणित विभाग, एस. आर. एम. एस. अभियांत्रिकी एवं प्रौद्योगिकी महाविद्यालय बरेली

ई-मेल: dranju07khandelwal@gmail.com

प्रो. अवनीश कुमार

वैज्ञानिक तथा तकनीकी शब्दावली आयोग नर्ड दिल्ली

ई-मेल: dravanishkumar@yahoo.com

सार: ब्लॉकचेन अंकीय, विकेंद्रीकृत प्रौद्योगिकी है जो सभी समकक्षीय नेटवर्क में लेनदेन का अभिलेख रखता है। ये अभिलेख विकेंद्रीकृत प्रणालियों में संग्रहीत होते हैं जो परस्पर जुड़े हुए हैं। ब्लॉकचेन "विश्द्ध रूप से स्पष्ट और छेड़छाड़ प्रतिरोधी डिजिटल बहीखाते हैं जो एक वितरित रूप में (यानी, केंद्रीय भंडार के बिना) और आमतौर पर एक केंद्रीय प्राधिकरण (यानि बैंक, कंपनी या सरकार) के बिना" लागू होते हैं। आजकल कुटमुद्रा (डिजिटल मुद्रा) उदयोग और शैक्षणिक द्निया दोनों में प्रचलित पद्धिति में बदल गई है।) अन्य उन्नत नकदी के बीच एक स्टैंड के रूप में, बिटकॉइन ने 2016 में अपने पूंजी बाजार को 10 बिलियन डॉलर से पूरा करने के साथ एक बड़ी उपलब्धि हासिल की है। ब्लॉकचेन एक ऐसी प्रक्रिया है जिसे, जब भी हम बात करते हैं कि कैसे तकनीक ने हमारे जीने के तरीके को और बदल दिया है, लगातार उपयोग में लाया जाता है । एक अच्छे कारण के लिए, ब्लॉकचेन बुनियादी तौर पर कई क्षेत्रों में बेहतर तरीके से हमारे जीवन के तरीके को बदल देता है। ब्लॉकचेन निस्संदेह अभिलेख की प्रणालियों में एक उल्लेखनीय क्रांति है। ब्लॉकचेन दवारा स्वीकार किए गए कई उच्च-स्तरीय उपयोगों के मामलों के कारण उदयोगों के कई विशेषज्ञों ने ब्लॉकचेन को 'मैजिक बीन्स' के रूप में वर्णित किया है तथा दुनिया भर के उदयोगों में उदयमियों ने इस विकास के सकारात्मक प्रभावों को समझा है। यह लेख ब्लॉकचेन प्रौद्योगिकी की मूल बातों, जैसे ब्लॉकचेन का आर्किटेक्चर, इसकी कार्य प्रक्रिया, अन्प्रयोगों, च्नौतियों और लाभ को प्रस्त्त करता है।

कुंजी शब्द : ब्लॉकचेन, कूटमुद्रा, ब्लॉकचेन संरचना, कूटलेखन

1. प्रस्तावना

कुछ भी जो आप एक आपूर्ति श्रृंखला के रूप में ग्रहण कर सकते हैं, ब्लॉकचेन उसकी दक्षता में अधिकतम सुधार कर सकता है - इससे कोई फर्क नहीं पड़ता कि यह लोगों, संख्याओं, डेटा, या धन से संबन्धित है। (गिन्नी रोमेटी, आई बी एम - सीईओ)

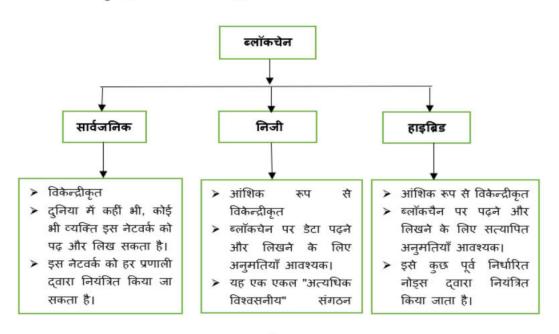
21वीं सदी में रहते हुए, हर कोई चाहता है कि उनका काम बिना पैसे और कम समय में सिर्फ एक स्पर्श में पूर्ण हो जाय। आज वह तकनीक विकसित हो रही है जो हर किसी के काम को बिना अधिक समय लगाए पूरा करती है। प्रौद्योगिकी की दुनिया में गोपनीयता एक खतरा है। ब्लॉकचेन वह तकनीक है जो हमारा विश्वास प्राप्त करती है और हमारे काम को आसान और आरामदायक बनाती है। संदर्भ [1] के अनुसार ब्लॉकचेन इंटरनेट का नया विकास है। ब्लॉकचेन का सिद्धांत प्रतिरूप बनाए बिना उपयोगकर्ताओं के बीच जानकारी वितरित करना है। ऐसा माना जाता है कि ब्लॉकचेन प्रक्रिया में तेजी से विकास होने से सभी की जीवनशैली में सुधार होगा। ब्लॉकचेन वास्तव में अभिलेखों का बढ़ता हुआ संग्रह है; इन अभिलेखों को ब्लॉक के रूप में नामित किया गया है और प्रत्येक गूढ़ालेखी क्रिप्टोग्राफिक अवधारणाओं का उपयोग करके हर दूसरे ब्लॉक से जुड़े हुए हैं। नेटवर्क के प्रत्येक ब्लॉक में डेटा, पूर्व ब्लॉक हैश मान और एक समय मोहर होती है। किसी भी जानकारी को सम्मिलित करना आसान है लेकिन संशोधन के मामले में ऐसा नहीं है।

संदर्भ [2] के अनुसार बिटकॉइन, एक संयोजित तंत्र है जो उपयोगकर्ताओं को सीधे उनके बीच पैसे का लेन-देन करने की अनुमित देता है। यह संबंधित प्रणाली की दक्षता को बढ़ाता है। लैरी समर्स का कहना है कि "बिटकॉइन में वही चिरित्र है जो एक फैक्स यंत्र के पास था। एक पृथक फैक्स मशीन एक बंद दरवाजा है। दुनिया जहां हर किसी के पास फैक्स यंत्र है वह एक बेहद मूल्यवान चीज है"। नकदी का हस्तांतरण दुनिया के किसी भी कोने से कुशलतापूर्वक किया जा सकता है। स्टीवन ओलशनस्की [3] के अनुसार, ब्लॉकचैन समरूपता और उपयोग प्रबंधन (IAM) में महत्वपूर्ण भूमिका निभाता है। हालांकि, आजकल, इस विधि को अब न केवल क्रिप्टो मुद्राओं के लिए, बिल्क दस्तावेज़ संरक्षण, आभासी नोटरी, और स्मार्ट अनुबंधों के लिए भी रखा गया है।

2. ब्लॉकचेन के प्रकार

ब्लॉकचेन के प्रकारों का वर्णन आरेख-1 में किया गया है जिसके प्रमुख भाग निम्न हैं।

2.1 सार्वजनिक ब्लॉकचेन


सार्वजनिक ब्लॉकचेन वे अनावृत स्रोत हैं जो किसी को भी उपयोगकर्ताओं, खनिकों, अभिकल्प विकासकर्ता तक पहुंचाने वाले, या समुदाय के सदस्यों के रूप में जुड़े होने की अनुमति देते हैं। लेनदेन का विवरण नेटवर्क में किसी के लिए भी उपलब्ध होता है। सार्वजनिक ब्लॉकचेन पूरी तरह से विकेंद्रीकृत और अत्यधिक सेंसरशिप-प्रतिरोधी होती हैं।

2.2 निजी ब्लॉकचेन

इस प्रकार के ब्लॉकचेन के अंतर्गत तंत्र में शामिल होने के लिए अनुज्ञा प्राप्त करना आवश्यक है। वे अधिक केंद्रीकृत होते हैं और लेनदेन भी निजी होता हैं। उन्हें अनुमति प्राप्त ब्लॉकचेन के रूप में भी जाना जाता है। इस प्रकार के ब्लॉकचेन के अंतर्गत तंत्र में शामिल होने के लिए अनुज्ञा प्राप्त करना आवश्यक है। वे अधिक केंद्रीकृत होते हैं और लेनदेन भी निजी होता हैं।

2.3 संकर ब्लॉकचेन

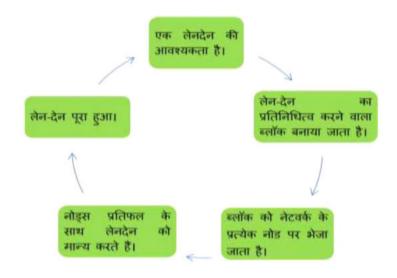
संकर ब्लॉकचेन में दोनों गोपनीय और सार्वजनिक ब्लॉकचेन लाभ संयुक्त होते हैं। इसमें व्यापार करने वालों को सुरक्षा और पारदर्शिता की दृष्टि से अधिक विश्वास करने में मदद मिलती है। यह ब्लॉकचेन के बह्-श्रृंखला तंत्र को अनुमति देता है।

आरेख 1: ब्लॉकचेन के प्रकार

3. ब्लॉकचेन आर्किटेक्चर

ब्लॉकचेन तकनीक अंकीय जानकारी को कॉपी करने के लिए वरीयता के स्थान पर, वितरितकरने को प्राथमिकता देता है। यह वितरित खाता बही पारदर्शिता, विश्वास और डेटा सुरक्षा को

प्रभावित करता है। ब्लॉकचेन स्थापत्य को मौद्रिक के अंदर बहुत व्यापक रूप से उपयोग किया जा रहा है जिसे आरेख 2 मे दिखाया गया है।


आरेख 2: ब्लॉकचेन की संरचना

वर्ल्ड वाइड वेब की पारंपरिक अभियांत्रिकी एक ग्राहक सर्वर व्यवस्था का उपयोग करती है। इस स्थिति के लिए, सर्वर एक ही स्थान पर सभी आवश्यक डेटा रखता है, इसलिए इसे प्नश्चर्या करना म्श्किल है। सर्वर एक एकीकृत डेटाबेस है जो प्राधिकरणों के साथ विभिन्न प्रमुखों द्वारा नियंत्रित है। ब्लॉकचेन अभियांत्रिकी के संप्रेषित प्रणाली के कारण, निकाय के अंदर प्रत्येक सदस्य नए अनुभागों को देखता है, उन पर ध्यान देता है और उसे आधुनिकतम बनाने का कार्य करता है। यह तंत्र अलग-थलग लोगों द्वारा नियंत्रित किया जाता है, फिर भी ब्लॉकचेन के अंदर प्रत्येक तंत्र डाटा को व्यवस्थित करता है। प्रत्येक तंत्र गारंटी देता है कि सभी रिकॉर्ड और तरीके एक साथ हैं, जिसके परिणामस्वरूप जानकारी वैध और स्रक्षित है। इस तरीके से, जो पक्षकार वास्तव में एक दूसरे पर विश्वास नहीं करते हैं, वे कुछ विशिष्ट नियमों के अनुसार समझौता करते हैं। चीजों को संक्षिप्त करने के लिए, ब्लॉकचेन एक विकेंद्रीकृत, एक पी 2 पी व्यवस्था में ऑर्केस्ट्रेटेड विभिन्न प्रकार के विनिमयकरण का संचारित रिकॉर्ड (सार्वजनिक और निजी) है। इस प्रणाली में कई निजी कंप्यूटर शामिल हैं, हालांकि इस तरह की जानकारी पूरे तंत्र के तालमेल (समझौते) के बिना समायोजित नहीं की जा सकती है। ब्लॉकचेन नवाचार की संरचना किसी विशिष्ट अन्रोध पर विनिमयकरण के साथ वर्गों के एक स्थिर पक्ष द्वारा दी जाती है। इन पक्षकारों को समस्तर अभिलेख या एक बुनियादी डेटाबेस के रूप में दूर रखा जाता है। ब्लॉकचेन द्वारा उपयोग की जाने वाली दो मूलभूत सूचना संरचनाएँ निम्न हैं:

- सूचक एक कारक जो दूसरे चर के क्षेत्र के बारे में डेटा रखते हैं। विशेष रूप से, यह दूसरे चर की स्थिति का संकेत देता है।
- सम्बद्ध अभिलेख- वर्गों की एक व्यवस्था जहां प्रत्येक वर्ग के पास एक सूचक की सहायता
 से स्पष्ट जानकारी और संपर्क के साथ वर्ग है।

ब्लॉकचेन की कार्य प्रणाली

किसी व्यक्ति द्वारा यंत्र के माध्यम से लेनदेन का अनुरोध किया जाता है। एक ब्लॉक जो दर्शाता है कि लेनदेन किया जा रहा है और यह तंत्र में सभी को भेजा जाता है। लेनदेन की पुष्टि की जाती है और काम के प्रमाण के लिए कुछ प्रतिफल दिए जाते हैं। ब्लॉकचेन तंत्र में ब्लॉक को अन्य ब्लॉकों से जोड़कर प्रक्रिया को पूरा किया जाता है।

आरेख 3: ब्लॉकचेन की कार्यप्रणाली संरचना

5. ब्लॉकचेन के अन्प्रयोग

ब्लॉकचेन को कई क्षेत्रों में एक विस्तृत श्रृंखला में नियोजित किया जा सकता है जैसा कि आरेख 4 में दर्शाया गया है। यहाँ कुछ संगठनो की पुष्टि की गई है [4], जिन्होंने अपने काम को सुरक्षित करने के लिए ब्लॉकचेन का पहले ही परिपालन करना शुरू कर दिया है।

आरेख 4: ब्लॉकचेन का प्रयोग

5.1 **वॉलमार्ट**: ब्लॉकचेन खाद्य उद्योगों में भी महत्वपूर्ण भूमिका निभाता है। ऐसा ही एक अच्छा उदाहरण है वॉलमार्ट। ये विश्व स्तर पर अपने भोजन को ट्रैक करने के लिए इसका उपयोग करते हैं। खाने की नकल जैसे नकली अंडे और पैक की गई वस्तु की समय सीमा समाप्ति जैसी चीजों की कमी ब्लॉकचेन के माध्यम से संभव हुई है।

बाजार में उनका नाम ग्राहकों द्वारा प्रदान किए गए आश्वासन के कारण बढ़ गया है। यह उन्हें सबसे भरोसेमंद संगठनों में से एक बनाता है। इससे नियोक्ताओं का काम भी आसान हो गया है।

5.2 किक: यह एक ऑनलाइन संदेश मंच है जिसमें लगभग 300 मिलियन उपयोगकर्ता जुड़े हैं। यह एक कनाड़ा की कंपनी का मोबाइल ऐप है जो सभी उपयोगकर्ताओं के उपयोग करने के लिए स्वतंत्र है। उनका प्राथमिक लक्ष्य यह सुनिश्चित करना है कि डेटा सुरक्षित रूप से वितरित हो रहा हैं। यह इस बात को भी सुनिश्चित करता है कि किसी भी डेटा की कोई क्षति नहीं हुई है।

यह क्टलेखन (एन्क्रिप्शन) और क्टवाचक (डिक्रिप्शन) प्रक्रिया का उपयोग करके किया जाता है। हितधारकों का कहना है, वे इसका उपयोग करने में स्खद महसूस करते हैं।

5.3 माइक्रोसॉफ़्ट: जैसा कि हम सभी जानते हैं कि माइक्रोसॉफ़्ट एक बहुराष्ट्रीय संगठन है। वे बहुत आसान और सुरक्षित तरीके से भुगतान करने के लिए ब्लॉकचेन का उपयोग करते हैं। वे व्यावसायिक विकास के लिए उपकरण भी प्रदान करते हैं। मई में, उन्होंने पूर्ण प्रबंधित एज़्योर ब्लॉकचेन सेवा लॉन्च की है। यह बहुत सावधानी से जानकारी की रक्षा करने में मदद करता है।

5.4 फ़ेडेक्स: यह दुनिया की सबसे बड़ी जहाज़ी माल परिवहन संगठन में से एक हैं। वे सालाना अरबों डॉलर का कारोबार करते हैं। फ़ेडेक्स अपने उच्च मूल्य वाले जहाज़ी माल परिवहन के उत्पादों को ट्रैक करने के लिए ब्लॉकचेन तकनीक का उपयोग करता है और ब्लॉकचेन का उपयोग करने वाली यह पहली नौ-परिवहण संगठन हैं। यह तकनीक उन्हें यह जांचने में मदद करती है कि सामान सही जगह पर दिया गया है या नहीं। इसके अलावा यह उन्हें, यह सर्वेक्षण करने में मदद करता है कि क्या सामान सुरक्षित हैं और किसी भी अवैध दवाओं के साथ मिश्रित नहीं हैं।

5.5 मास्टरकार्ड: यह एक वितीय सेवा कंपनी है, जो दुनिया भर में बड़ी मात्रा में सुरक्षित रूप से लेनदेन करने के लिए ब्लॉकचेन का उपयोग करती है। वे सार्वजनिक ब्लॉकचेन के तहत आते हैं।

इसके अतिरिक्त व्यक्ति तात्कालिक भुगतान भी कर सकता है। बिटकॉइन आधारित भी भुगतान किया जाता हैं। इस वितीय सेवा कंपनी को हाल ही में, उन्हें ब्लॉकचेन के विभाजन के लिए एक पेटेंट दिया गया है ताकि वे कई लेनदेन प्रकारों और प्रारूपों को संग्रहीत करने के लिए उपयोग कर सकें।

6. ब्लॉकचेन के लाभ

ब्लॉकचेन में ऐसी कई विशेषताएं हैं जो इस तकनीक को उच्च स्तर पर ले जाती हैं जैसा आरेख 4 में दर्शाया गया हैं।

- ब्लॉकचेन पूरी तरह से एक विकेंद्रीकृत प्रणाली है। तंत्र का हिस्सा जो भी है, वह उस विशिष्ट तंत्र की पूरी जिम्मेदारी लेता है।
- ब्लॉक की डेटा संरचना को केवल जोड़ा जा सकता है और इसे किसी भी तरह से बदला नहीं
 जा सकता है क्योंकि कूटलेखन का उपयोग डेटा-बही की सुरक्षा के लिए किया जाता है।
- पैसे के लेन-देन के लिए कोई खर्च करने की आवश्यकता नहीं होती है।
- यह लेन-देन कुछ ही सेकिंड के भीतर पूर्ण हो जाता है।
- किसी व्यक्ति के व्यक्तिगत विवरणों को हैक करना किसी के लिए भी एक बड़ी कठिनाई बन जाता है।
- हैशिंग एल्गोरिदम और ट्रिकी एन्क्रिप्शन का उपयोग करके दोहरे खर्च की समस्या को नजर अंदाज किया जाता है।
- दोहराव के लिए कोई जगह नहीं है, इसलिए गलत काम करने के लिए जालसाजों के लिए मुश्किल हो जाता है।
- असफलताओं का प्रतिरोध, विफलता के कमजोर बिंदु के बाद से, कई ग्रंथियों के भीतर वितरित किया जाता है, जिससे सिस्टम अधिक विफलता-प्रतिरोधी हो जाता है।
- तंत्र सेंसरिशप के लिए अयोग्यता, क्योंिक कोई केंद्रीय प्राधिकरण नहीं है जो किसी भी पार्टी को संबोधित कर सके और डेटा को हटाने की मांग कर सके। पार्टियां एप्लिकेशन के डोमेन या आईपी पते को भी ब्लॉक नहीं कर सकती हैं, क्योंिक एक विकेंद्रीकृत उपकरण को विशिष्ट पते या डोमेन की आवश्यकता नहीं है। बेशक, वे एक व्यक्तिगत तंत्र उपयोगकर्ता को आईपी पते से ट्रैक कर सकते हैं और उन्हें अक्षम कर सकते हैं। लेकिन अगर पीयर-ट्रपीयर तंत्र काफी बड़ा है, तो पूरी तरह से एप्लिकेशन को अलग करना एक असंभव काम हो जाता है, खासकर अगर नोड्स विभिन्न देशों में बिखरे हुए हैं।
- उपयोगकर्ताओं को अपने स्वयं के लाभ के लिए धोखा देने में सक्षम एक शासी निकाय
 द्वारा नियंत्रित किसी एप्लिकेशन पर भरोसा करने की अधिक संभावना है।

7. ब्लॉकचेन तकनीक की सीमाएं / कमियां

ब्लॉकचेन तकनीक की अपनी सीमाएं / कमियां हैं। इनमें से कुछ निम्नलिखित हैं:

- संसाधनों की बर्बादी: ब्लॉकचेन डिजिटल, विकेंद्रीकृत प्रौद्योगिकी है जो सभी समकक्षीय तंत्र में लेनदेन का अभिलेख रखता हैं। यह वितरित प्रकृति पर आधारित हैं। इसमें नोड्स के बीच आम सहमति बनाने के लिए प्रत्येक नोड को ब्लॉकचेन में चलना पड़ता है। हालांकि इससे बहुत लाभ होता है, लेकिन किसी तरह, कार्य के इस दोहराव से बिजली जैसे महत्वपूर्ण प्राकृतिक संसाधनों की गणना, भंडारण और अपव्यय की आवश्यकता में दोहराव हो जाता है।
- नेटवर्क की गति: ब्लॉकचेन में जैसा कि हम जानते है कि गणना नोड्स के आधार पर होती है, जिससे कार्य प्रक्रिया की गति धीमी हो जाती है और तंत्र में संचय होना शुरू हो जाता है।
- मानवीय त्रुटि से विश्वास का भारी नुकसान हो सकता है: यदि ब्लॉकचेन का उपयोग डेटाबेस
 के रूप में किया जाता है, तो डेटाबेस में जाने वाली जानकारी उच्च गुणवत्ता की होनी चाहिए।
 एक ब्लॉकचेन पर संग्रहीत डेटा स्वाभाविक रूप से विश्वसनीय नहीं है, इसलिए घटनाओं को
 पूर्व स्थान पर शुद्ध रूप से दर्ज करने की आवश्यकता होती है।
- अनुचित सुरक्षा दोष: बिटकॉइन और अन्य ब्लॉकचेन में एक उल्लेखनीय सुरक्षा दोष है: यदि नेटवर्क को सेवा देने के लिए नोड्स के रूप में काम करने वाले आधे से अधिक कंप्यूटर एक झूठ बताते हैं, तो झूठ सच बन जाएगा। इसे '51% हमला 'कहा जाता है।

8. ब्लॉकचेन अनुप्रयोगों के नुकसान

हर कार्य प्रणाली में गुण और दोष दोनों विद्यमान होते हैं। यहाँ ब्लॉकचेन अनुप्रयोगों के कुछ नुकसान निम्नलिखित हैं:

- त्रुटियों के अद्यतन करने और समाप्त करने में कठिनाई: ब्लॉकचेन कार्य प्रणाली में त्रुटियों
 के अद्यतन करने और समाप्त करने में कठिनाई होती हैं। यदि नोड्स के कुछ भाग संशोधन
 स्वीकार नहीं करते हैं तो इस अंकीय, विकेंद्रीकृत प्रौद्योगिकी के पीयर-टू-पीयर नेटवर्क और
 द्विशाखी के प्रत्येक नोड पर इसका अद्यतन किया जाना चाहिए।
- समर्पित उद्देश्यों के लिए नेटवर्क की क्षमता: किसी भी प्रयोग के पीछे कुछ व्यावसायिक तर्क होते हैं। ब्लॉकचेन, प्रकृति से, सख्त तर्क को नियोजित करता है जो लाभ के नुकसान के बिना नए स्वरूप को अनुमित नहीं देता है, जिससे ब्लॉकचेन समाधान के लिए तार्किक व्यापार परिवर्तनों की आवश्यकता होती है।
- उपयोगकर्ता की पहचान का सत्यापन: कभी-कभी, प्रयोग को उपयोगकर्ता की पहचान को सत्यापित करने की आवश्यकता होती है। चूंकि इसमें कोई केंद्रीय अधिकारी नहीं है जो

उपयोगकर्ता की पहचान का आश्वासन देता हो, इसलिए कुछ विकेंद्रीकृत एप्स का विकास एक गंभीर समस्या बन सकता है।

- विकास में किठनाई: ब्लॉकचेन कार्य प्रणाली में सर्वसम्मित प्राप्त करने और शुरूआत से ही स्केलिंग के लिए बहुत जिटल प्रोटोकॉल लागू करना आवश्यक है। जल्दबाजी में कोई भी विचार/नियम लागू नहीं हो सकता है। नेटवर्क के पुन: विकास के लिए कुछ समय बाद नई स्विधाओं को जोड़ने और फोर्किंग या प्रयोग बिना विस्तार करने की उम्मीद नहीं होती है।
- डेटा का संग्रहण: आम तौर पर, डेटा को संग्रहीत या पुनर्प्राप्त करने के लिए अनुप्रयोगों को तीसरे पक्ष के एपीआई की आवश्यकता नहीं होती है। आपका विकेंद्रीकृत अनुप्रयोग डेप्प्स (Dapps) केंद्रीयकृत अनुप्रयोगों के ए पी आई पर निर्भर नहीं होना चाहिए, लेकिन वे अन्य डेप्प्स(Dapps) पर निर्भर कर सकते हैं। सिद्धांत रूप में, यह अच्छा लगता है, लेकिन यह अभ्यास में कठिनाइयों का कारण हो सकता है।

9. ब्लॉकचेन में चुनौतियां

हालांकि ब्लॉकचेन अवधारणाओं का उपयोग विभिन्न उद्देश्यों के लिए किया जाता है, फिर भी ब्लॉकचेन में कुछ संख्या में किमयाँ भी हैं। चूंकि आभासी मुद्रा और विकेंद्रीकृत प्रणाली बाजार में नई हैं, इसलिए ये लोगों द्वारा उपयोग किए जाने के लिए अत्यधिक तनावपूर्ण हैं। किसी भी डेटा का संशोधन अपेक्षाकृत बहुत श्रमसाध्य होता है। ब्लॉकचेन ऊर्जा के भार का उपयोग करता है जो एक नया ब्लॉक बनाता है। हमें उत्पत्ति (पहले ब्लॉक) ब्लॉक से सभी ब्लॉकों के हैश मूल्य में परिवर्तन करने की आवश्यकता होती हैं। मापक्रमणीयता सिस्टम में एक और नुकसान के रूप में चालू रहती है।

10. निष्कर्ष

बिटकॉइन नेटवर्क ब्लॉकचेन तकनीक का पहला सफल कार्यान्वयन है। शब्द "ब्लॉकचेन टेक्नोलॉजी" आम तौर पर पारदर्शी, भरोसेमंद, सार्वजिनक रूप से सुलभ बहीखाता को संदर्भित करता है जो हमें सार्वजिनक कुंजी कूटलेखन (एन्क्रिप्शन) और कार्य विधियों के प्रमाण का उपयोग करके मूल्य की इकाइयों के स्वामित्व को सुरक्षित रूप से स्थानांतरित करने की अनुमित देता है। ब्लॉकचेन एक निर्विवाद रूप से सरल आविष्कार है। ब्लॉकचेन एक क्रांतिकारी तकनीक है जो कई वर्तमान व्यापार मॉडल का पुनर्निर्माण करेगी, पूरी तरह से अर्थव्यवस्था और समाज को बदल देगी, और एक वैज्ञानिक और तकनीकी नवीनता पर भरोसा करेगी। फिर भी, ब्लॉकचेन प्रौद्योगिकी और इसके पूर्ण उपयोग की क्षमता अभी भी विकास के चरण में है। संक्षेप में यह कहा जा सकता है कि ब्लॉकचेन बढ़ती हुई तकनीक है जो क्रिप्टोग्राफी का उपयोग करके दुनिया को बदल रही है। इसकी मदद से लेन-देन विश्व स्तर पर कहीं भी किया

जा सकता है। बिटकॉइन और ब्लॉकचेन पूरी तरह से अलग हैं। यह कहना उचित होगा कि बिटकॉइन, ब्लॉकचेन तकनीक की अवधारणा का उपयोग करता है। यह दुनिया भर में व्यापक रूप से कई उद्देश्यों के लिए उपयोग किया जाता है। निसंदेह, इन सभी बिंदुओ की समीक्षा करके हम समझ सकते हैं कि ब्लॉकचेन तकनीक गायब नहीं होने वाली है। यह हमारी अर्थव्यवस्था और समाज को गहराई से बदलने का एक स्रोत है।

संदर्भ

- [1] https://blockgeeks.com/guides/whatis-blockchain-technology
- [2] https://www.blockchain.com/learningportal/bitcoin-faq
- [3] Steve Olshansky, Internet Society, Steve Wilson, Lockstep Consulting, "Do Blockchains Have anything to Offer Identity?" https://www.internetsociety.org/resources/doc/2018/blockchainidentity
- [4] https://www.blockchain-council.org/blockchain/top-10-companies-thathave-already-dopted-blockchain

असमघात प्वासाँ प्रक्रिया के माध्यम से सॉफ्टवेयर प्रणाली विश्वसनीयता विकास मॉडल

डॉ. मधु जैन

गणित विभाग, भारतीय प्रौद्योगिकी संस्थान, रुड़की रुड़की उत्तराखंड

सार: सॉफ्टवेयर विश्वसनीयता विकास मॉडल (SRGMs) सॉफ्टवेयर की परीक्षण प्रक्रिया को अधिक प्रभावी बनाने में बहुमूल्य अंतर्दृष्टि प्रदान करते हैं। असमघात प्वासाँ प्रक्रिया (NHPP) के साथ सॉफ्टवेयर विश्वसनीयता मॉडल के अनुप्रयोग सॉफ्टवेयर विश्वसनीयता की भविष्यवाणी करने और परीक्षण लागत को कम करने के लिए भली-भाँति जाने जाते हैं। विभिन्न एसआरजीएम (Software Reliability Growth Models) को प्रख्यात शोधकर्ताओं द्वारा विकसित किया गया है ताकि सिस्टम विश्वसनीयता में सुधार हो सके और इष्टतम रिलीज नीति निर्धारित की जा सके। इस समीक्षा लेख में, हम एनएचपीपी (Non-homogeneous Poisson Process) पर आधारित सॉफ्टवेयर विश्वसनीयता वृद्धि मॉडल के पद्धतिगत पहलुओं का अवलोकन करेंगे।

1. प्रस्तावना

कंप्यूटर प्रौद्योगिकी दिन प्रतिदिन आगे बढ़ रही है जिसने सॉफ्टवेयर को कई अंतः स्थापित प्रणालियों का एक अनिवार्य घटक बना दिया है। सॉफ्टवेयर विश्वसनीयता सॉफ्टवेयर बना देने के साथ-साथ सॉफ्टवेयर उपयोगकर्ताओं दोनों के लिए एक प्राथमिक चिंता का विषय है। सॉफ्टवेयर, विश्वसनीयता वृद्धि मॉडल (SRGMs) दोषों का पता लगाने और उनको हटाने की प्रक्रियाओं के लिए महत्वपूर्ण भूमिका निभाते हैं। एक सॉफ्टवेयर के परीक्षण और विकास के चरणों के दौरान, कुछ महत्वपूर्ण प्रश्न आने की संभावना होती है, नामतः सॉफ्टवेयर कितना विश्वसनीय है, सॉफ्टवेयर प्रणाली (सिस्टम) में कितने दोष शेष हैं, कब परीक्षण रोकना है या कब सॉफ्टवेयर विश्वसनीयता के वांछित स्तर को प्राप्त करेगा और कब इसे ग्राहक को प्रस्तुत किया जाना चाहिए, आदि शामिल है। इन प्रश्नों का उत्तर सॉफ्टवेयर विकास की विश्वसनीयता मॉडलिंग करके किया जा सकता है। सॉफ्टवेयर विश्वसनीयता तकनीकों का उपयोग करने वाले सॉफ्टवेयर बना

देने वाले सॉफ़्टवेयर के इष्टतम प्रस्तुति समय के साथ-साथ संसाधन आवंटन इष्टतमता के लिए बेहतर तरीके से बेहतर निर्णय ले सकते हैं।

विश्वसनीयता एक ऐसा कारक है जो सॉफ्टवेयर की गुणवता को मापता है और इसे विभिन्न गुणों के साथ सॉफ़्टवेयर प्रणाली के जीवन काल या स्थिरता के रूप में पिरिभाषित किया जाता है। गुणवत्ता सॉफ्टवेयर डिजाइन करने के लिए, सॉफ्टवेयर विकास प्रक्रिया की विश्वसनीयता और इष्टतम प्रस्तुति समय का मूल्यांकन सॉफ्टवेयर विकास प्रक्रिया के दौरान मात्रात्मक रूप से किया जाता है जो कई उन्नत सॉफ्टवेयर प्रणालियों के लिए तेजी से समय लेने वाले और महंगे मामले बन गए हैं। सॉफ़्टवेयर विकसित करने की लागत और सॉफ़्टवेयर विफलताओं को हटाने से संबंधित सॉफ़्टवेयर अंत स्थापित प्रणालियों के विकास में व्यय बढ़ गए हैं। पिछले पांच दशकों के दौरान,विभिन्न प्रकार के सॉफ़्टवेयर विश्वसनीयता विकास मॉडल (SRGMs) विकसित किए गए हैं, लेकिन यह निर्णय करना कठिन है कि इनमें से कौन-सा सही या बेहतर है।

डिबगिंग (दोष निवारण)प्रक्रिया का उपयोग सॉफ्टवेयर में दोष का पता लगाने के लिए प्रक्रियाओं को डिजाइन करने के लिए किया जाता है। दोष हटाने की प्रक्रिया को मोटे तौर पर निम्नलिखित दो श्रेणियों में वर्गीकृत किया गया है:

- सही डिबिगिंग (दोष निवारण) प्रक्रिया: इस श्रेणी में, सॉफ़्टवेयर से दोषों को पूरी तरह से हटाने का प्रयास किया जाता है। यह प्रक्रिया सुनिश्चित करती है कि दोष निवारण के दौरान कोई नया दोष तो नहीं प्रविष्ट होता है और सभी दोष पूरी तरह से हटा दिए गए हैं।
- अपूर्ण दोष निवारण प्रक्रिया:दोष निवारण की इस प्रक्रिया में, जैसे-जैसे सॉफ्टवेयर का आकार और कार्यक्षमता बढ़ती जाती है, सॉफ्टवेयर कोड की जटिलता भी बढ़ती जाती है और सॉफ्टवेयर विकासकर्ता (डेवलपर्स) सभी आवश्यकताओं को पूरी तरह से समझ नहीं पाते हैं। यह दर्शाती है कि कुछ परीक्षण दक्षताएँ आमतौर पर अपूर्ण होती है जिनसे दोष पूरी तरह से हटाए नहीं जा सकते।

सॉफ़्टवेयर विश्वसनीयता वृद्धि मॉडिलंग की व्यापक प्रयोज्यता ने हमें विभिन्न रूपरेखाओं में एसआरजीएम का अध्ययन करने के लिए प्रेरित किया है। इस समीक्षा लेख में, हम इष्टतम प्रस्तुति नीतियों की कुछ महत्वपूर्ण अवधारणाओं के साथ सॉफ्टवेयर सिस्टम की विश्वसनीयता के मुद्दों का अवलोकन प्रस्तुत कर रहे हैं। हम विभिन्न एसआरजीएम पर चर्चा कर रहे हैं जो एनएचपीपी पर आधारित हैं और विश्वसनीयता के एक वांछित गुणवता प्राप्त करने के लिए सॉफ्टवेयर विकास चरण के दौरान इसके महत्वपूर्ण उपयोगों को प्रदर्शित करते हैं।

सॉफ़्टवेयर विश्वसनीयता मॉडिलंग की व्यापक प्रयोज्यता ने हमें विभिन्न परिस्थियों में सॉफ़्टवेयर सिस्टम की कुछ विश्वसनीयता और लागत अनुकूलन पहलुओं पर चर्चा करने के लिए प्रेरित किया है। हम असमघात प्वासाँ प्रक्रिया (NHPP) पर आधारित सॉफ्टवेयर विश्वसनीयता वृद्धि मॉडल (SRGMs) के विकास की कला की स्थिति पर चर्चा करेंगे। सतत एसआरजीएम और सॉफ्टवेयर परीक्षण प्रक्रिया से संबंधित कुछ कार्यप्रणाली पहलुओं का अवलोकन प्रस्तुत किया जाएगा।

2. एनएचपीपी और सॉफ्टवेयर विश्वसनीयता विकास मॉडल (एसआरजीएम)

दोष का पता लगाने और हटाने की प्रक्रियाओं का वर्णन करने के लिए सतत सॉफ़्टवेयर विश्वसनीयता वृद्धि मॉडल का उपयोग किया जा सकता है। इस अनुच्छेद में, एनएचपीपी आधारित सॉफ्टवेयर परीक्षण प्रक्रिया और सतत एसआरजीएम से संबंधित कुछ पद्धितिगत पहलुओं का अवलोकन और प्रस्तुतिकरण किया जाएगा।

2.1 एनएचपीपी और विश्वसनीयता सूचकांक

आम तौर पर, सॉफ्टवेयर परीक्षण / दोष निवारण प्रक्रिया को एक त्रुटि गणना प्रक्रिया के रूप में तैयार किया जाता है। एनएचपीपी सॉफ्टवेयर सिस्टम के मॉडलिंग के लिए एक उपयोगी उपकरण है और सिस्टम के गतिशील व्यवहार को दर्शाने में सक्षम है जैसे भार सहभागिता (लोड शेयरिंग), अपूर्ण दोष क्षेत्र, जटिल मरम्मत, आदि। गुणवता सॉफ्टवेयर को विकसित करने के लिए, कई महत्वपूर्ण कारक हैं जिन्हें ध्यान में रखा जाना चाहिए। जब भी कोई दोष देखा जाता है, तो उसे हटाने के लिए दोष का कारण खोजने के लिए त्रंत प्रयास किया जाता है।

एक गणना प्रक्रिया $\{N(t), t \geq 0\}$ को असमघात प्वासाँ प्रक्रिया $\{N(t), t \geq 0\}$ को असमघात प्वासाँ प्रक्रिया $\{N(t), t \geq 0\}$ को असमघात प्वासाँ प्रक्रिया $\{N(t), t \geq 0\}$ के साथ एक प्वासाँ बंटन का अनुसरण करता है और इसे निम्नलिखित द्वारा दिया जाता है

$$\Pr(N(t) = k) = \frac{m(t)^k e^{-m(t)}}{k!}, \quad k = 0, 1, 2, \dots$$
 (1)

समय (0,t) के अंतर्गत पाई गई त्रुटियों की अपेक्षित संख्या निम्न प्रकार है (लीयू, 1996):

$$m(t) = \int_{0}^{t} \lambda(x)dx. \quad \dots$$
 (2)

सॉफ्टवेयर विश्वसनीयता को मापने के लिए, हम (i) परीक्षण विश्वसनीयता और (ii) परिचालन विश्वसनीयता पर विचार करते हैं। परीक्षण चरण में सॉफ्टवेयर की विश्वसनीयता को परीक्षण विश्वसनीयता कहा जाता है और परीक्षण चरण के दौरान कोई विफलता नहीं होने की प्रायिकता के रूप में परिभाषित किया जाता है। यह निम्नलिखित द्वारा दी जाती है (cf. लीयू, 1996):

$$R_{te}(\Delta t/t) = \exp[m(t) - m(t + \Delta t)] \tag{3}$$

परिचालन चरण में सॉफ्टवेयर विश्वसनीयता को परिचालन विश्वसनीयता के रूप में जाना जाता है और इसका उपयोग इस प्रायिकता की भविष्यवाणी के लिए किया जाता है कि सॉफ्टवेयर के परिचालन चरण के दौरान कोई विफलता नहीं होती है। इसको निम्नलिखित द्वारा दिया जाता है:

$$R_{op}(\Delta t/t) = \exp[-\lambda(t)\Delta t] \tag{4}$$

इष्टतम सॉफ़्टवेयर विमोचन नीति के लिए असतत विश्वसनीयता फलन का उपयोग किया जाता है। यह इस प्रायिकता को परिभाषित करता है कि अंतिम विफलता n परीक्षण (टेस्ट रनों) में होने के बाद अब कोई विफलता परीक्षण (टेस्ट रनों) के दौरान नहीं होती है, और इसे निम्नलिखित दवारा दिया जाता है:

$$R(\Delta n \mid n) = \exp(m(n) - m(n + \Delta n)) \tag{5}$$

विफलता समय (MTTF) को उस औसत समय अविध के रूप में परिभाषित किया गया है जो किसी सॉफ़्टवेयर सिस्टम में विफलता से पहले व्यतीत होता है। संचयी विफलता समय और तात्कालिक विफलता समयक्रमशः निम्नलिखित द्वारा दिए जाते हैं:

$$MTTF_c = \frac{t}{m(t)} \quad \text{3fl} \mathcal{T}TF_I = \frac{1}{\lambda(t)}$$
 (6)

2.2 सतत सॉफ्टवेयर विश्वसनीयता वृद्धि मॉडल (C-SRGMS)

सॉफ़्टवेयर विश्वसनीयता सिद्धांत के क्षेत्र में कई शोधकर्ता पूर्ण / अपूर्ण दोष निवारण अवधारणाओं को सम्मिलित करके सॉफ़्टवेयर विश्वसनीयता विकास मॉडल विकसित करने के लिए गैर-सजातीय प्वासाँ प्रक्रिया मॉडल का अध्ययन करने में रुचि रखते हैं। सतत एनएचपीपी पर लोकप्रिय एसआरजीएम(फाम, 2000) में से कुछ तालिका 1 में बताए गए हैं। एस आर जी एम सूत्रिकारण के लिए उपयोग किए जाने वाले कुछ संकेतन इस प्रकार हैं:

m(t) माध्यमानफलन

a(t) दोष मात्राफलन

b(t) समय निर्भर दोष का पता लगाने की दर

β दोषप्रविष्टि दर

 $lpha(\c z)$ स्केल (आकार) प्राचल

ग प्रभाव कारक

c आकार प्राचल

N परीक्षण प्रयास व्यय की प्रारंभिक संख्या

परीक्षण के प्रयास की खपत दर

संरचना सूचकांक

A अचर

मॉडल का नाम	दोष मात्रा फ़ंक्शन a(t)	दोष का पता लगाने की दर b(t)	माध्यमान फलन $m(t)$
गोयल-ओकुमोटो	а	b	$a(1-e^{-bt})$
विलंबित एस के आकार	а	$\frac{b^2t}{1+bt}$	$a[1-(1+bt)e^{-bt}]$
मोड़ एस के आकार	а	$\frac{b}{1+\eta e^{-bt}}$	$\frac{a(1-e^{-bt})}{1+\eta e^{-bt}}$
घातीय अपूर्ण दोष निवारण	ae ^{fa}	b	$\frac{ab}{(\beta+b)}(e^{\beta t}-e^{-bt})$
रैखिक अपूर्ण दोष निवारण	$a(1+\beta t)$	b	$a(1-e^{-bt})(1-\frac{\beta}{b})+\beta at$
फाम-नोरदमन झांग मॉडल	$a(1+\beta t)$	$\frac{b}{(1+\eta e^{-bt})}$	$\frac{a}{(1+\eta e^{-bt})}[(1-e^{-bt})(1-(\frac{\beta}{b}))+\beta at]$

तालिका 1: संपूर्ण / अपूर्ण दोष निवारण अवधारणाओं के साथ कुछ सतत एसआरजीएम

2.3 उन्नत एसआरजीएम विकसित करने के लिए विशिष्ट आवश्यकताएं

अपूर्ण दोष निवारण के साथ एसआरजीएम

जटिलता, त्रुटि जनन, अपूर्ण और गलत कोडिंग के कारण, सिस्टम में सॉफ़्टवेयर त्रुटियों को पूरी तरह से हटाया नहीं जाता है, जो तंत्र (सिस्टम) की चल रही स्थिति को प्रभावित करता है। इस घटना को अपूर्ण दोष निवारण के रूप में जाना जाता है। जैन आदि (2014) ने सॉफ्टवेयर विश्वसनीयता विकास मॉडल में अपूर्ण दोष निवारण प्रक्रिया का अध्ययन किया, जिसमें सॉफ्टवेयर की कुल रखरखाव लागत तथा वारंटी लागत का मूल्यांकन किया गया।

b. परीक्षण का प्रयास

सॉफ्टवेयर विकास जीवन चक्र में सॉफ्टवेयर परीक्षण प्रमुख विशेषताओं में से एक है। परीक्षण चरण के दौरान दोष समन्वेषण दर, दृढ़ता से परीक्षण टीमों, कार्यक्रम के आकार और सॉफ्टवेयर परीक्षण क्षमता पर निर्भर करती है। अधिकतर एसआरजीएम दोषों का पता लगाने और उन्हें दूर करने के लिये कैलेंडर समय का उपयोग इकाई परीक्षण के समय के रूप में करते हैं। सॉफ़्टवेयर के नए संस्करण में, दोष अपने प्रारंभिक संस्करणों की तुलना में अधिक महत्वपूर्ण और शक्तिशाली हो जाते हैं। आमतौर पर परीक्षण प्रयास फलन को परीक्षण चरण के दौरान त्रुटियों का अनुमान लगाने के लिए आवश्यक प्रयास के रूप में वर्णित किया जाता है। परीक्षण प्रयास को परीक्षण चरण के दौरान त्रुटियों का पता लगाने और सही करने के लिए आवश्यक प्रयास के रूप में परिभाषित किया गया है।

c. परिवर्तन बिंदुओं के साथ सॉफ्टवेयर विश्वसनीयता विकास मॉडल (SRGM)

विफलता वितरण कई कारकों से प्रभावित हो सकता है, जिसमें परीक्षण युक्ति, चल रहा पर्यावरण, संसाधन नियतन तथा कई और कारक शामिल हैं। कई बार सॉफ्टवेयर-परीक्षण चरण के दौरान इन कारकों को बदल भी दिया जाता है। इस तथ्य का विश्लेषण कई शोधकर्ताओं ने विभिन्न एसआरजीएम के साथ परिवर्तन बिंदुओं को विकसित करके किया है।

d. दोष में कमी कारक (FRF)

सबसे महत्वपूर्ण मापदंडों में से एक, जो सॉफ्टवेयर विश्वसनीयता की वृद्धि को नियंत्रित करता है, दोष में कमी कारक (एफआरएफ) है। इसे शुद्ध दोष में कमी की अनुभव की गई विफलताओं के अनुपात के रूप में परिभाषित किया गया है।

e. परीक्षण कवरेज (Testing Coverage)

यह सॉफ्टवेयर विश्वसनीयता के स्तर को बेहतर बनाने के लिए सबसे महत्वपूर्ण कारकों में से एक है। परीक्षण के दौरान, यह माना गया था कि सॉफ़्टवेयर दोषों का पता लगाया जाता है और उन्हें लगातार हटा दिया जाता है लेकिन परीक्षण की अविध बढ़ने के साथ ही वास्तविक स्थिति में, परीक्षण टीम के कौशल और सीखने में भी वृद्धि होती है। परीक्षण कवरेज कारक फलन में टीम के कौशल और सीखने को दर्शाते हैं और वेइबुल (Weibull), चरघातांकीय (Exponential), एस-आकार आदि के रूप में विभिन्न वितरणों का उपयोग करके हाल ही में गुप्ता आदि (2019) ने परीक्षण कवरेज और समय के प्रयास फलन के साथ एक समय पश्चता फलन पर चर्चा की।

f. मॉड्यूल आधारित सॉफ्टवेयर

मॉड्यूलर सॉफ्टवेयर की गंभीरता और जिटलता के कारण, सॉफ़्टवेयर में बड़ी संख्या में दोष होने की अधिक संभावना है। यदि सॉफ्टवेयर मॉड्यूल की संख्या में वृद्धि जारी है, तो मॉड्यूल की अखंडता से जुड़े प्रयास भी बढ़ जाते हैं। परीक्षण टीम को जिटल दोषों को दूर करने के लिए अधिक परीक्षण प्रयास की आवश्यकता होती है। इस कारण से दोष की गंभीरता के आधार पर सॉफ्टवेयर को मॉड्यूल में विभाजित किया जा सकता है। किठन दोष को दूर करने के लिए, सॉफ्टवेयर परीक्षण टीम को प्रत्येक मॉड्यूल में कार्य को पूरा करने के लिए अधिक परीक्षण प्रयासों की आवश्यकता होती है। जैन और गुप्ता (2011) ने वेइबुल परीक्षण प्रयास फलन पर विचार करके मॉड्यूल आधारित सॉफ्टवेयर रिलीज नीति पर चर्चा की। जैन आदि (2019) ने अपूर्ण दोष निवारण और दोष समानयन कारक को शामिल करते हुए मॉड्यूल आधारित सॉफ्टवेयर विश्वसनीयता वृद्धि मॉडल विकसित किया।

परीक्षण प्रयास फलन

सॉफ्टवेयर विकास जीवन चक्र में सॉफ्टवेयर परीक्षण प्रमुख विशेषताओं में से एक है। इस कारण से, सॉफ़्टवेयर का पूरी तरह से परीक्षण करने के लिए बहुत सारे प्रयास करना आवश्यक है। परीक्षण प्रयास को परीक्षण चरण के दौरान त्रुटियों का पता लगाने और सही करने के लिए आवश्यक प्रयास के रूप में परिभाषित किया गया है। परीक्षण प्रयास फलन के लिए आमतौर पर उपयोग किए जाने वाले कुछ महत्वपूर्ण लेख तालिका-2 में सूचीबद्ध हैं:

परीक्षण प्रयास	परीक्षण प्रयास फलन (TEF)	संदर्भ	
चर घातांकीय	$N(1-\exp(-\alpha t))$	यमदा आदि (1986)	
रेले	$N(1-\exp(\frac{\alpha}{2}t^2))$	यमदा आदि (1986)	
वेइबुल	$N(1-\exp(-\alpha \frac{t^c}{c}))$	यमदा आदि (1986)	
संशोधित- लॉजिस्टिक	$\frac{N}{\sqrt[\delta]{1 + A(\exp(-\alpha \delta t))}}$	हुआंग और लो (2006)	

तालिका 2: परीक्षण प्रयास कार्य

प्राचल अनुमान और सांख्यिकीय अनुमान

सॉफ्टवेयर विश्वसनीयता वृद्धि मॉडल की भविष्यवाणी के लिए, प्राचल अनुमान और सटीक होने का आंकलन (Goodness of Fit) इस क्षेत्र में कार्यरत शोधकर्ताओं की प्राथमिक चिंता है (फाम, 2000)। सॉफ्टवेयर विश्वसनीयता विकास मॉडल का उपयोग वास्तविक सॉफ्टवेयर विकास वातावरण में करने के लिए, प्राचलों का अनुमान लगाया जाना चाहिए।

4.1 अधिकतम संभावना विधि (Maximum Likelihood Estimation)

अधिकांश सॉफ़्टवेयर मॉडल प्रेषित विफलता डेटा पर सर्वोत्तम उपयुक्तता मान प्रदान करने के लिए एम एल ई (MLE) का उपयोग करते हैं। यह एक बड़े प्रतिदर्श आकार के लिए सबसे अच्छा सांख्यिकीय अनुमानक है। इष्टतम प्राचल मान (फाम, 2000) निर्धारित करने के लिए इस प्रत्यक्ष विधि को सफलतापूर्वक लागू किया जा सकता है।

मान लीजिए कि डेटा (t_k,m_k) जहाँ m_k विफलताओं की समय t_k तक संग्रहीत संख्या है,जबिक k= 1,2,...,n; $0 < t_1 < t_2 < \cdots < t_k$ के रूप में उपलब्ध है। तब संभावना फलन (Likelihood Function) निम्नलिखित द्वारा प्रदत्त है:

$$LF = Pr\{N(t_1) = m_1, N(t_2) = m_2, ..., N(t_k) = m_k\}$$
 (7)

इस प्रकार, हम प्राप्त करते हैं:

$$LF = \prod_{k=1}^{n} \frac{(m(t_k) - m(t_{k-1}))^{(m_k - m_{k-1})}}{(m_k - m_{k-1})!} e^{-(m(t_k) - m(t_{k-1}))}$$
(8)

संभावना फलन(LF) के लॉग रन का अधिकतमता फलन निम्नलिखित द्वारा प्राप्त किया जाता है:

$$0 = \sum_{k=1}^{n} \frac{\partial m(t_{k}) - \partial m(t_{k-1})}{m(t_{k}) - m(t_{k-1})} (m_{k} - m_{k-1}) - \frac{\partial}{\partial \varphi} m(t_{n})$$
(9)

जहां φ अज्ञात प्राचलों का मान ग्रहण करता है।

4.2 सटीकता आकलन (Goodness of Fit) के लिए तुलना मापदंड

सॉफ़्टवेयर दोष निवारण प्रक्रिया के भविष्य के व्यवहार की जांच करने के लिए, पिछले सॉफ़्टवेयर दोष आंकड़ों का उपयोग किया जा सकता है, ताकि सटीकता आकलन की वैधता और अच्छाई का अंदाज़ा लगाया जा सके। आमतौर पर उपयोग किए जाने वाले तुलना मापदंडों के दो प्रकार हैं, अर्थात, (i) फिट मापदंडों की अच्छाई (ii) भविष्य कथन वैधता मापदंड। सॉफ़्टवेयर विश्वसनीयता वृद्धि मॉडल के फिट होने के लिए निम्न सटीकता आकलन सूत्रों का उपयोग किया जाता है:

(a) अनुमान की सटीकता (AE):AE को निम्नवत परिभाषित किया गया है:

$$AE = \left| \frac{m_k - \hat{a}}{m_k} \right|,\tag{10}$$

जहाँ m_k परीक्षण के बाद ज्ञात किये गए दोषों की वास्तविक संचयी संख्या है और \hat{a} दोषों की अनुमानित संख्या को दर्शाता है।

(b) **माध्य वर्ग त्रुटि** (Mean Square Error, MSE):अनुमानित मानों और देखे गए मानों के बीच का अंतर MSE द्वारा जात किया जाता है, MSE निम्नलिखित सूत्र द्वारा प्राप्त किया जाता है:

MSE =
$$\frac{1}{n} \sum_{k=1}^{n} (m(t_k) - m_k),$$
 (11)

जहाँ n प्रेक्षणों की कुल संख्या है। MSE का छोटा मान एक छोटी फिटिंग त्रुटि को इंगित करता है और फिट की बेहतर अच्छाई देता है।

(c) सापेक्ष त्रुटि (Relative Error): वर्तमान और अतीत की विफलता व्यवहार की सहायता से भविष्य के विफलता व्यवहार की भविष्यवाणी को भविष्य कथन वैधता कहा जाता है और आंकड़े समुच्चय (डेटा सेट) के लिए सापेक्ष त्रुटि (RE) के संदर्भ में मूल्यांकित किया जा सकता है। यदि

परीक्षण समय t_k के अंत तक k विफलताएं देखी जाती हैं, तो RE निम्नलिखित द्वारा दिया जाता है:

$$RE = \frac{m(t_k) - k}{t_k} \tag{12}$$

(d) पूर्वाग्रह: पूर्वाग्रह अनुमानित और वास्तविक आंकड़ों के बीच अंतरों का योग है। पूर्वाग्रह का कम मान सटीकता की बेहतर अच्छाई देता है। पूर्वाग्रह निम्नलिखित द्वारा निर्धारित किया जाता है:

$$Bias = \sum_{k=1}^{n} \left(m(t_k) - m_k \right) / k. \tag{13}$$

(e) प्रसरण: भविष्यवाणी की गई त्रुटियों के औसत को भविष्यवाणी पूर्वाग्रह कहा जाता है और इसका मानक विचलन प्रायः भविष्य उक्तियों में प्रसरण के माप के रूप में उपयोग किया जाता है। प्रसरण का मूल्यांकन करने के लिए, हम निम्नांकित सूत्र का उपयोग करते हैं:

$$Variance = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} \left(m_k - m(t_k) - Bias \right)^2}$$
 (14)

(f) मूल माध्य वर्ग प्राक्कथन त्रुटि (Rootmean Square Error, RMSPE): यह निकटता का एक पैमाना है जिससे मॉडल प्रेक्षणों की भविष्यवाणी करता है। मूल माध्य वर्ग प्राक्कथन त्रुटि का उपयोग निम्नांकित सूत्र द्वारा किया जाता है:

$$RMSPE = \sqrt{Variance^2 + Bias^2}.$$
 (15)

सॉफ्टवेयर विश्वसनीयता विकास मॉडल (एस आर जी एम)

सामान्यीकृत SRGM का वर्णन करने के लिए, हम उन दोषों की प्रारंभिक संख्या पर विचार करते हैं। हं जो सॉफ़्टवेयर परीक्षण की शुरूआत में सॉफ़्टवेयर दोषों की संख्या का प्रतिनिधित्व करते हैं। इसके अलावा, हम मानते हैं कि दोष का पता लगाने की प्रक्रिया की प्रभावशीलता को मापने की प्रक्रिया कई कारकों पर निर्भर करती है, जैसे कि विफलता-से-दोष संबंध, कोड निरीक्षण कारक, परीक्षण टीमों का कौशल, कार्यक्रम का आकार और सॉफ्टवेयर परीक्षण क्षमता आदि। विशिष्ट बिंदु पर दोष ज्ञात होने पर उसे परिवर्तन बिंदु के रूप में जाना जाता है। उपर्युक्त परीक्षण के

लिए प्रयास हेतु वेइबुल बंटन (Weibull Distribution) का प्रयोग सॉफ्टवेयर से दोषों का पता लगाने और उन्हें सॉफ्टवेयर से हटाने के लिए कर सकते हैं।

अब हम कुछ और यथार्थवादी अवधारणाओं जैसे कि अपूर्ण दोष निवारण, वेइबुल प्रकार के परीक्षण प्रयास, दोष निवारण कारक (एफआरएफ) और कई परिवर्तन बिंदुओं को शामिल करके सॉफ्टवेयर विश्वसनीयता विकास मॉडल (एसआरजीएम) विकसित करेंगे। एनएचपीपी (Non-homogeneous Poisson Process) सॉफ्टवेयर विश्वसनीयता वृद्धि मॉडल तैयार करने के लिए, हम कुछ धारणाएँ मान रहे हैं, जो नीचे बताई गई हैं:

- i. दोष हटाने की प्रक्रिया असमघात प्वासाँ प्रक्रिया (NHPP) का अनुसरण करती है।
- ii. (T, t + Δt) में पाए गए औसत दोष सॉफ्टवेयर सिस्टम में शेष रहे दोषों के अनुपात में है।
- iii. प्रत्येक बार जब विफलता होती है, तो संबंधित दोष तुरंत हटा दिए जाते हैं, लेकिन इसके अलावा, कुछ नए दोष परीक्षण प्रक्रिया के दौरान प्रविष्ट हो जाते हैं। इसे अपूर्ण दोष निवारण घटना माना जाता है।
- iv. परीक्षण प्रयास के उपयोग को वेइब्ल वितरण द्वारा नियंत्रित किया गया है।
- v. कई परिवर्तन बिंदुओं की अवधारणा पर विचार किया गया है।

6. एसआरजीएम की लागत अनुकूलन और इष्टतम विमोचन नीतियां

सॉफ्टवेयर विश्वसनीयता की भविष्यवाणी के लिए एसआरजीएम का उपयोग सॉफ्टवेयर परीक्षण के लिए इष्टतम रोक समय को ज्ञात करने के लिए एक सांख्यिकीय आधार प्रदान करता है। इष्टतम विमोचन नीति लागत मापदंडों के आधार पर सॉफ्टवेयर इंजीनियरिंग में एक महत्वपूर्ण निर्णय है। सॉफ्टवेयर विकास चरण के दौरान परीक्षण के प्रयास की लागत और सॉफ्टवेयर को जारी करने से पहले और बाद में एक त्रुटि को ठीक करने की लागत को शामिल करके कुल सॉफ्टवेयर लागत का मूल्यांकन किया जा सकता है। सॉफ्टवेयर विकास प्रक्रिया के परीक्षण चरण के दौरान नई तकनीकों की लागत स्थिर नहीं हो सकती है।

शोध साहित्यों में, हम सतत एसआरजीएम के लिए बड़ी संख्या में लागत अनुकूलन समस्याओं को प्राप्त कर सकते हैं। जैन (2017) ने अपूर्ण डिबगिंग और परिवर्तन बिंदुओं के साथ लागत अनुकूलन और विश्वसनीयता वृद्धि मॉडल का प्रस्ताव दिया।

निष्कर्ष

वर्तमान समीक्षा लेख का मुख्य उद्देश्य एनएचपीपी पर आधारित सॉफ्टवेयर विश्वसनीयता वृद्धि मॉडल के पद्धितिगत पहलुओं पर चर्चा करना है, जिसमें अधिक यथार्थवादी मान्यताओं, अर्थात् अपूर्ण दोष निवारण, परिवर्तन बिंदु, परीक्षण प्रयास फलन आदि शामिल हैं। हमारी प्रस्तुत शोध समीक्षा गणितीय मॉडलिंग और प्रदर्शन क्षमता पर केंद्रित है। विश्वसनीयता वृद्धि के मूल्यांकन के लिए विभिन्न संदर्भों में सॉफ्टवेयर तंत्र की भविष्यवाणियां लागत और विश्वसनीयता मापदंडों के आधार पर इष्टतम विमोचन नीतियों पर भी चर्चा की गई है। समीक्षा किए गए शोध कार्य सॉफ्टवेयर तंत्र के इष्टतम परीक्षण लागत को निर्धारित करने में सॉफ्टवेयर विकासकर्ता और निर्माताओं को कार्यान्वयन कला हेतु मूल्यवान अंतर्दष्टि प्रदान करेंगे। मॉड्यूलर और वास्तविक वातावरण में सिक्रय सॉफ्टवेयर की विश्वसनीयता वृद्धि का पता लगाने के लिए बहुत गुंजाइश है।

सन्दर्भ

- Gupta, R., Jain, M. and Jain, A. (2019): Software reliability growth model in distributed environment subject
 to debugging time lag, In: Deep K., Jain M., Salhi S. (eds) Performance Prediction and Analytics of
 Fuzzy, Reliability and Queuing Models. Asset Analytics (Performance and Safety Management), 105118, Springer.
- Huang, C. Y. and Lo, J. H. (2006): Optimal resource allocation for cost and reliability of modular software systems in the testing phase, Journal of System and Software, 79, 653-664.
- Jain, M. (2017), Cost optimization and reliability growth models with imperfect debugging and change points, Review of Business and Technology Research, Journal of MTMI, USA, 14(2), 71-76.
- Jain, M. and Gupta, R. (2011): Optimal release policy of module-based software, Quality Technology and Quantitative Management, 8(2), 147-165.
- Jain, M. and Priya, K. (2002): Optimal policies for software testing time, Journal of Computer Society of India, 32, 25-30.
- Jain, M., Jain, A. and Gupta, R. (2019): Analysis of module-based software reliability growth model incorporating imperfect debugging and fault reduction factor, Quality, IT and Business Operations, 69-80.
- Jain, M., Manjula, T. and Gulati, T.R. (2014): Prediction of reliability growth and warranty cost of software with fault reduction factor, imperfect debugging and multiple change-point, International Journal of Operational Research, 21(2), 201-220.
- Lyu, M. R. (1996): Handbook of Software Reliability Engineering, McGraw-Hill, New York.
- Pham, H. (2000): Software Reliability, Springer-Verlag, Singapore.
- Yamada, S., Ohtera, H. and Narihisa, H. (1986): Software reliability growth models with testing-effort, IEEE Transactions on Reliability, 35, 19-23.

ब्रॉडबैंड बेतार अनुप्रयोग के लिए सूक्ष्म पट्टी प्रेषित आयताकार परावैद्युत अनुनाद एंटीना

सोवन मोहंती

बैबस्वता मोहपात्रा

इलेक्ट्रॉनिक्स और संचार अभियांत्रिकी विभाग एस. आर. एम. एस. अभियांत्रिकी एवं प्रौद्योगिकी महाविद्यालय, बरेली इलेक्ट्रिकल, इलेक्ट्रॉनिक्स और संचार इंजीनियरिंग गलगोटियास विश्वविदयालय, ग्रेटर नोएडा

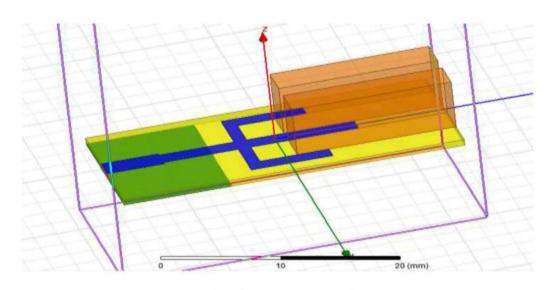
सार: इस पत्र में आधुनिक वायरलेस अनुप्रयोग के लिए उपयुक्त एक क्षेष्ठ निम्न प्रोफाइल, ब्रॉडबैंड आयताकार परावैद्युत अनुनाद एंटीना का सुझाव दिया गया है। संकीर्ण बैंडविड्थ और उच्च क्रॉस धुवीकरण जैसे एंटीना के रूप में एक गुंजयमान यंत्र की अंतर्निहित सीमाओं का अध्ययन किया गया है। एंटीना और मिलान नेटवर्क के अनुरूप प्रेषण की संवेदनशीलता को कम करके बैंड की चौड़ाई में वृद्धि प्राप्त की जा सकती है। प्रतिबिंब गुणांक, विकिरण स्वरूप, सह और पार धुवीकरण और लाभ का अध्ययन ANSYS HFSS का उपयोग करके किया गया है। प्रस्तावित एंटीना 95.87% की प्रतिबाधा बैंडविड्थ के साथ 4.25 गीगाहर्ट्ज से 13.09 गीगाहर्ट्ज तक चल रहा है।

कुंजी शब्द: आयताकार (DRA), ब्रॉड बैंड एंटेना, परावैधुत वेव गाइड मॉडल (DWM), अल्ट्रा-वाइड बैंडविड्थ (UWB)

प्रस्तावना

आरएफ और सूक्ष्म तरंग तकनीक ने पिछले एक दशक में उच्च गित, व्यापक बैंडविड्थ, ध्रुवीकरण शुद्धता, उच्च लाभ और उच्च विकिरण स्थिरता के साथ-साथ लघु डिजाइन की खोज में एक अभूतपूर्व बदलाव किया है। उच्च आवृति प्रौद्योगिकी, जो रक्षा और सैन्य आधारित अनुप्रयोगों तक सीमित थी, वर्तमान में 5 जी, उच्च गित गणना और अन्य औद्योगिक, चिकित्सा और वाणिज्यिक अनुप्रयोगों जैसे तार रहित संचार में एक मौलिक प्रौद्योगिकी के रूप में सबसे आगे है। उच्च डेटा दर के साथ सिस्टम को तेज़ बनाने के लिए हमें उच्च बैंडविड्थ की आवश्यकता होती है। शैनन हार्टले प्रमेय के अनुसार [1] उच्च चैनल क्षमता उच्च आवृति पर सिस्टम को संचालित करके प्राप्त की जा सकती है क्योंिक बैंडविड्थ सीधे संक्रिया की आवृत्ति के आनुपातिक है। किंतु यादच्छिक गैर-रैखिकता जैसी उच्च आवृति पर कई चुनौतियां विद्यमान हैं; गैर-सजातीय व्यवहार और वितरित

प्राचल आधारित विश्लेषण [2]। चूँकि प्रयुक्त तरंग दैर्ध्य घट जाती है और युक्ति (डिवाइस) के भौतिक आयाम के लिए तुलनीय हो जाती हैं तो चरण उलट और पारगमन समय प्रभाव हावी हो जाता है। इसका मतलब है कि संरचना के मरण के लिए सभी घटकों और यहां तक कि संचरण रेखा (ट्रांसिमेशन लाइन) का उपयोग एक गुंजयमान परिपथ (सिकेट) के रूप में व्यवहार करेगा और समग्र व्यवहार प्रकृति में संकीर्ण बैंड होगा। एक एंटीना की बैंड चौड़ाई से निपटने की क्षमता आमतौर पर निवेशित प्रतिबाधा और संचालन की आवृत्ति द्वारा व्यक्त की जाती है। बैंड की चौड़ाई को निर्गत विशेषताओं जैसे लाभ, क्रॉस धुवीकरण स्तर, बीम चौड़ाई आदि द्वारा भी व्यक्त किया जा सकता है। अल्ट्रा-वाइड बैंडविड्थ प्रणाली लाभ और बैंडविड्थ में एक दूसरे के विपरीत आनुपातिक होते हैं और चरण वेग संक्रिया की आवृत्ति या तरंग दैर्ध्य का फलन होता है [3]। यह विचरण प्रभाव स्पंदनों के चौड़ीकरण का कारण बनता है जो सिस्टम की दक्षता को कम करता है। सूक्ष्म तरंग और एमएम तरंग परास में चरण देरी बढ़ जाती है और त्वचा की गहराई कम हो जाती है जिससे प्रतिरोध में वृद्धि होती है और इस तरह 1'क की हानि काफी बढ़ जाती है। संक्रिया की उच्च आवृत्ति पर कई संकर अपहासित मोड बनाए जाएंगे और संबंधित युक्ति डिवाइस का प्रचालिक विश्लेषण बहत महत्वपूर्ण हो जाएगा।

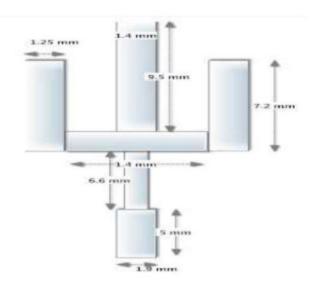

सबसे लोकप्रिय सूक्ष्म पट्टी माइक्रो-स्ट्रिप पैच एंटीना मूल रूप से एक धारिता संकीर्ण बैंड संरचना है [2]। इसलिए विशेष रूप से उच्च बैंडविड्थ के संदर्भ में संचार उद्योग की कमी को पूरा करने के लिए, परावैद्युत अनुनाद एंटीना एक अंतिम विकल्प है। वांछित धुवीकरण विशेषताओं के साथ इसमें कम परावैद्युत हानि, कंडक्टर हानि और विकिरण हानि होती है। आयताकार डीआरए स्वतंत्रता के दो डिग्री होने के कारण उच्चतम डिजाइन लचीलापन प्रदान करता है। आयताकार डीआरए में अल्ट्रा-बैंडविड्थ प्राप्त करने के लिए कई बैंडविड्थ संवर्द्धन तकनीक मौजूद हैं [4] जैसे अनुनादक का क्यू-फैक्टर कम करना, कई डीआरए का संयोजन और उपयुक्त बाहरी मिलान नेटवर्क इत्यादि। यह शोधपत्र बाह्य तुलनीय नेटवर्क को नियोजित करके बैंडविड्थ वृद्धि पर केंद्रित है। इस संबंध में विभिन्न तुलनीय तकनीकें मौजूद हैं जैसे कि क्वार्टर वेव ट्रांसफॉर्मर, स्टब मैचिंग और Tchebyshev प्रतिबाधा नेटवर्क आदि। एंटीना की उच्च संवेदनशीलता सटीक प्रतिबाधा मिलान की मांग करती है। भार और प्रषेण मार्ग के उचित मिलान के बिना प्रतिबिंब गुणांक तेजी से बढ़ता है। यह संरचना के भीतर आगे की यात्रा की लहर के बजाय, स्थाई तरंग के प्रभुत्व की ओर अग्रसर होता है। इसे वीएसडब्ल्युआर में वृद्धि के द्वारा देखा जा सकता है।

इस शोधपत्र में, 95.87% के एक आंशिक बैंडविड्थ वाले एक नए अल्ट्रा-वाइड बैंड परावैद्युत अनुनाद एंटीना का प्रस्ताव किया जा रहा है। इस प्रस्तावित एंटीना को सूक्ष्म पट्टी इंसर्ट नेटवर्क द्वारा प्रेषित किया जाता है जो DRA के प्रतिबाधा को सूक्ष्म पट्टी संचरण रेखा ट्रांसिमशन लाइन में बदलने के लिए उत्तरदायी होता है। इस एंटीना की मिलान प्रोफ़ाइल को डीआरए के नीचे के क्षेत्र को केंद्रित करके बढ़ाया जा सकता है। यहां तीन आवेषण का उपयोग युग्मन को इष्टम करने और बैंडविड्थ के प्रदर्शन को बढ़ाने के लिए किया जाता है। आवेशित नेटवर्क को रेडिएटर के रूप में कार्य नहीं करना चाहिए, इसलिए आवेशित प्राचल जैसे कि चौड़ाई, लंबाई, विद्युतशीलता आदि को परावैद्युत तरंग निर्देशन मॉडल को नियोजित करके गणना की जानी चाहिए। आवेशित की ग्ंजयमान आवृत्ति सक्रिया की वांछित आवृत्ति से अधिक चाहिए [4]। आवेषणों की स्थिति ट्रांसिमशन लाइन के खूले अंत के संबंध में अधिक संवेदनशीलता प्रदान करती है जिसे प्रतिबाधा बैंडविड्थ को बढ़ाने के लिए समायोजित किया जा सकता है। आयताकार डीआरए एक छोटे क्षैतिज चुंबकीय द्विधुवीय की तरह विकीर्णन करता है। प्रस्तावित डिजाइन प्राचलिक विश्लेषण को इष्टतम करने के लिए परिमित तत्व विधि को नियोजित करके पैरामीट्रिक प्राचलिक विश्लेषण अनुच्छेद ॥ किया गया था। अनुच्छेद ॥ में संख्यात्मक परिणाम भी प्रस्तुत किए जा रहे हैं। सिमुलेशन किए परिणाम का गहन विश्लेषण धारा अनुच्छेद III में प्रस्तुत किया गया है। अंत में अनुच्छेद IV में निष्कर्ष दिए गए हैं।

2. एंटीना की संरचना

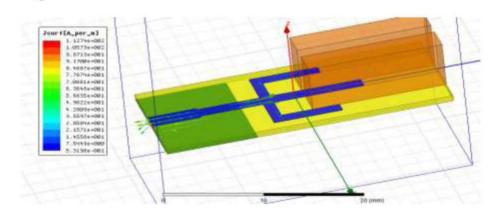
चित्र 1 प्रस्तावित अल्ट्रा-वाइड बैंड एंटीना की विस्तृत संस्थिति का वर्णन करता है। इसमें एक आयताकार परावैद्युत गुंजयमान यंत्र होता है जिसे एक मध्यवर्ती अवस्तर पर रखा जाता है जिसके ऊपर सूक्ष्म पट्टी पैच का एक नेटवर्क होता है। अवस्तर के नीचे एक सांत तल को लगाकर, आयताकार डीआरए को मोनोपोल आयताकार डीआरए में बदलकर अल्ट्रा वाइड बैंड ऑपरेशन प्राप्त किया जा रहा है। परिमित आधारी तल के कारण किनारों से प्रकीर्णन हो जाएगा जो कई मोड बनाता है। यदि प्रभावी ढंग से उपयोग किए जाए तो ये कई मोड अल्ट्रा-बैंड सिस्टम के लिए बेहद योगदान दे सकते हैं। प्रस्तावित आधारी तल का आकार प्रस्तावित एंटीना के निवेश और निर्गम विशेषताओं को बढ़ाने के लिए इष्टतम है। सबसे अच्छा प्रतिबाधा बैंडविड्थ 9.5 मिमी की चौड़ाई पर प्राप्त किया जाता है। इस्तेमाल किया गया अवस्तर RO 3003 (tm) है जिसमें 3 की पारगम्यता ६ है और 0.0013 की हानि स्पर्शरेखा है। पोषक नेटवर्क तीन चरण आधारित सूक्ष्म

पट्टी लाइनों से बना है। प्रारंभिक पैच पट्टी की चौड़ाई और लंबाई क्रमशः 1.9 मिमी और 5.0 मिमी है। आयताकार डीआरए एक जिटल विद्युत चुंबकीय क्षेत्र की समस्या है। विभिन्न संरचनाओं के लिए एक उपयुक्त विद्युत चुंबकीय समाधान खोजना वास्तव में किठन है। प्रारंभिक आयाम, क्यू-कारक और अनुवादक आवृत्ति के अनुमान की गणना परावैद्युत तरंग निर्देश मॉडल से की जाती है। एफसीसी अल्ट्रा-वाइड बैंड रेडियो सिस्टम के अनुसार आमतौर पर 7.5 गीगाहर्ट्ज़ के केंद्र आवृत्ति के साथ 3.1 गीगाहर्ट्ज़ से 10.6 गीगाहर्ट्ज़ तक संचालित होता है। आयताकार डीआरए 10 की अपरिचालक स्थिर है, 14 मिमी की लंबाई और 7 मिमी की चौड़ाई है। प्रस्तावित एंटीना 95.57% की प्रतिबाधा बैंडविड्थ के साथ 4.25 गीगाहर्ट्ज़ से 13.09 गीगाहर्ट्ज़ तक की आवृत्ति रंज से चल रहा है।

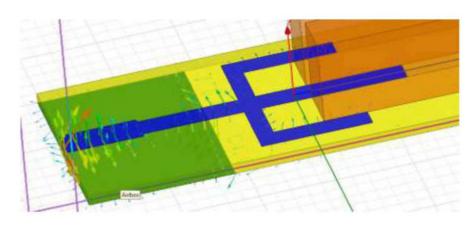


चित्र 1: प्रस्तावित एंटीना का साइड व्यू और शीर्ष दृश्य

तालिका 1


संरचना	लंबाई -	चौड़ाई	<u>ऊं</u> चाई	विद्युतशीलता	सामग्री	tan δ
सब्सट्रेट	30 mm	12 mm	0.75 mm	3.0	RO 3003 (tm)	0.0013
DRA 1&2	14 mm	6.3 mm	6 mm	10.0	Arlon AR 1000(tm)	0.003

चित्र 2 अवस्तर आरओ 3003 टीएम पर वितिरित एंटीना के माइक्रो-स्ट्रिप पोषक नेटवर्क का वर्णन करता है, जिसकी मोटाई 0.75 मिमी है। DRA1 और DRA2 के साथ शासक पैच नेटवर्क एंटीना की विस्तृत बैंड विशेषताओं की प्राप्ति के लिए उत्तरदायी हैं। परावैद्युत पर पैच के ब्रंचिंग प्रभाव



चित्र 2: एंटीना की माइक्रो-स्ट्रिप पोषक नेटवर्क

और पैच के पीछे दोषपूर्ण आधारी तल की उपस्थिति के कारण छोटी तरंगे बनाई जा रही हैं। पोषक नेटवर्क के संबंध में दो डीआरए की स्थिति एंटीना की विद्युत विशेषताओं को तय करती है। DRA की ऊंचाई 6 मिमी है जो फ़ीड और DRA के बीच महत्वपूर्ण युग्मन के लिए पर्याप्त उपयुक्त है। फ़ीड नेटवर्क के साथ दो DRA कैपेसिटिव नेटवर्क बनाता है। DRA को सूक्ष्म पट्टी लाइन के अधिकतम विद्युत क्षेत्र के पास रखा गया है।

चित्र 3: एंटीना पर सतह आधार का गठन

चित्र 4: एंटीना के भीतर विद्युत और चूंबकीय क्षेत्र का गठन

चित्र 4 परावैद्युत के भीतर विद्युत और चुंबकीय क्षेत्र की दिशा को इंगित करता है। इस E और H क्षेत्र की गणना क्रमशः विद्युत और चुंबकीय सदिश संभावित फलन F और A से की जा सकती है। इन संभावित फलनों को सतह के वर्तमान घनत्व J और उपकरण के भीतर मौजूद सभी साधनों के योगदान से निर्धारित किया जा सकता है जैसा कि चित्र 3 में दिखाया गया है।

प्राचित्रक अध्ययन

इस परियोजना में डीआरए विशेषताओं से प्राचिलिक अध्ययन प्राप्त िकया जाता है। प्रारंभिक स्थूण (strub) के साथ सिन्नवेशित DRA का उपयोग बैंडविड्थ को बढ़ाने के लिए िकया जाता है। स्थूण का आयाम जैसे चौड़ाई और लंबाई धारिता और आगमनात्मक प्रभाव प्रदान करता है [2]। DWM में ऊपरी सतह और DRA की दो साइड की दीवारों को सही चुंबकीय दीवार माना जाता है और DRA को संचालित आधारी तल के ऊपर रखा जाता है और नीचे की सतह पर एक इलेक्ट्रिकल दीवार मौजूद होती है। गाइड के भीतर क्षेत्र पैटर्न या मोड TE_{mn} और TM_{mn} हैं। गाइड के भीतर का क्षेत्र प्रकृति में साइनसोइडल है जबिक गाइड के बाहर का क्षेत्र प्रकृति में चरघातांकीय रूप में क्षीणित है। x, y, z दिशाओं में तरंग प्रसार संख्या का पता लगाना आवश्यक है जो k_x , k_y , k_z और क्षीणन x और y दिशाओं में स्थिर है [3]। तरंग संख्या k को प्रति इकाई लंबाई के चरण शिफ्ट के रूप में परिभाषित किया जा सकता है अर्थात् $k = \omega \sqrt{\mu \epsilon}$, स्रोत की उपस्थित के बिना: चुंबकीय क्षेत्र के लिए सिदेश तरंग समीकरण है:

$$\nabla^2 H + k^2 H = 0 \tag{1a}$$

विद्युत क्षेत्र के लिए सदिश तरंग समीकरण है:

$$\nabla^2 E + k^2 E = 0 \tag{1b}$$

इस प्रकार,

$$E(\nabla^2 + k^2) = 0$$

x- दिशा में,
$$E_x\left(\frac{\partial^2}{\partial z^2}+k^2\right)=0$$
, z- दिशा में तरंग चल रही है। हल करने पर
$$E_x=Ee^{\pm jkz} \tag{2}$$

ऋण चिन्ह आगे बढ़ने ऋणों वाली लहर के लिए और धन चिन्ह उल्टा चलती लहर के लिए हैं। यदि E_z और H_z घटक एक साथ प्रसार की दिशा में मौजूद हैं जो कि Z दिशा है तो उत्पन्न फ़ील्ड पैटर्न को हाइब्रिड मोड कहा जाता है। यहाँ द्वितीय क्रम आंशिक अवकल समीकरण स्ट्रिंग के समीकरण पर आधारित है जिसका उपयोग तरंग की विशेषताओं का वर्णन करने के लिए किया जाता है। हम एक एंटीना की विशेषताओं को बताने के लिए उस गणितीय भाषा को बनाए रखते हैं। स्रोत की उपस्थित में DRA को हेल्महोल्ट्ज़ के समीकरण की विशेषता दी जा सकती है। हेल्महोल्ट्ज़ का समीकरण इलेक्ट्रोमैग्नेटिक्स में मूल स्रोत है जिसमें से विद्युत और चुंबकीय क्षेत्र की गणना विद्युत और चुंबकीय धारा घनत्व से विभव फलनों के द्वारा की जा सकती है। विभव फलन [2] की गणना अदिश जोड़तोड़ के माध्यम से की जा सकती है तािक हम जटिल सिदश हैरफेर [1] से बच सकें। इलेक्ट्रिक और चुंबकीय वेक्टर क्षमता मानव निर्मित रािशयों हैं।

$$\nabla^2 A + k^2 A = -J \tag{3a}$$

$$\nabla^2 F + k^2 F = -M \tag{3b}$$

जहाँ F= इलेक्ट्रिक वेक्टर क्षमता, A = चुंबकीय वेक्टर क्षमता हैं।

आरडीआरए के सबसे कम क्रम मोड का क्षेत्र वितरण परावैद्युत तरंग निर्देश मॉडल द्वारा निर्धारित किया जाता है कि यह माना जाता है कि डीआरएएस अनंत आधार की सतह पर रखा हुआ है। एक आयताकार DRA में, आयामों के साथ b>d, निम्नतम क्रम मोड $TE_{11\delta}^z$. होगा। DWM निम्नलिखित क्षेत्र का उपयोग करके DRA के भीतर प्राप्त किया जाएगा जो मूल रूप से प्रकृति में साइसोइडल (sinusoidal) है [2]:

$$H_{x} = \frac{(k_{x}k_{z})}{j\omega\mu_{0}}\sin(k_{x}x)\cos(k_{y}y)\sin(k_{z}z)$$
 (4)

$$H_y = \frac{(k_y k_z)}{j\omega\mu_0} \cos(k_x x) \sin(k_y y) \sin(k_z z)$$
 (5)

$$H_z = \frac{(k_x^2 + k_z^2)}{j\omega\mu_0}\cos(k_x x)\cos(k_y y)\cos(k_z z)$$
 (6)

$$E_x = k_y \cos(k_x x) \sin(k_y y) \cos(k_z z)$$
 (7)

$$E_{v} = -k_{x} \sin(k_{x} x) \cos(k_{y} y) \cos(k_{z} z)$$
(8)

$$E_z = 0 (9)$$

$$k_x^2 + k_y^2 + k_z^2 = \varepsilon_r k_0^2 \tag{10}$$

$$k_z \tan\left(\frac{k_z d}{2}\right) = \sqrt{k_0^2 (\varepsilon_r - 1) - k_z^2}$$
 (11a)

$$k_{x} = \frac{m\pi}{a} \tag{11b}$$

$$k_y = \frac{n\pi}{b} \tag{11c}$$

सबसे कम क्रम मोड में ६ के मान को z- दिशा में क्षेत्र भिन्नता के आधे चक्र के अंश के रूप में परिभाषित किया जा सकता है और इसके द्वारा ६ दिया जाता है:

$$\delta = \frac{k_z}{\pi/d} \tag{12}$$

प्राप्त क्षेत्र संरचना बहुत कम चुंबकीय द्विधुवीय द्वारा उत्पादित क्षेत्र के समान है। विकिरणित शक्ति P होगी जो निम्नवत हैं-

$$P = \int_0^a \int_0^b (E \times H^*) \, dx \, dy \tag{13}$$

पावर कटऑफ आवृत्ति के ऊपर वास्तविक है और पावर कटऑफ आवृत्ति के नीचे अधिकल्पित है।

$$P = P_r + jP_i \tag{14}$$

 $P_r =$ प्रमुख मोड के कारण विकिरणित शक्ति

 $P_i = 3$ च्चतर मोड के कारण अधिकल्पित शक्ति

अधिकल्पित भाग P_i को अशक्त करना होगा। इसलिए हमें 50Ω बिंदु बलिदान क्षमता का पता लगाना होगा। इस प्रकार उत्तेजना का बिंदु बहुत संवेदनशील है और यह TE या TM के प्रकार के स्वतंत्र होना चाहिए। डिज़ाइनर की दिलचस्पी पावर को ले जाने के लिए सिंगल मोड के चयन में निहित है अन्यथा मोड पुनर्जनन की मोड कपलिंग होती है। यदि वे एक ही कट ऑफ आवृति रखते हैं तो दो मोड कम हो जाएंगे। TE_{01} का एक विकृति समकक्ष TM_{01} है जो व्यवहार में मौजूद नहीं है। इस प्रकार यदि हम उच्चतर मोड पर काम करेंगे तो हमें यह सुनिश्चित करना होगा कि निचला क्रम मौजूद न हो। इस प्रकार हमें एक मोड दबानेवाला यंत्र का उपयोग करना होगा।

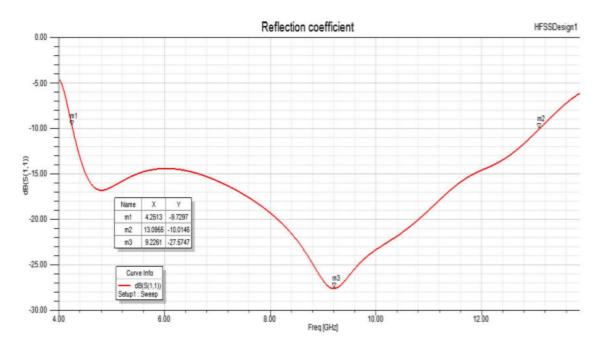
आयताकार डीआरए का क्षेत्र वितरण एक छोटे चुंबकीय द्विधुवीय [2] के समान है। DRA द्वारा उत्पन्न विकिरण पैटर्न का विश्लेषण लघु चुंबकीय द्विधुव के विश्लेषण के समान किया जा सकता है। व्यावहारिक रूप से डीआरए सान्त आधार की सतह पर लगाया जाता है, जो निश्चित रूप से किनारों से विवर्तन के कारण विकिरण पैटर्न को प्रभावित करता है [3]।

$$k_x^2 + k_y^2 + k_z^2 = \varepsilon_r k_0^2 \tag{15}$$

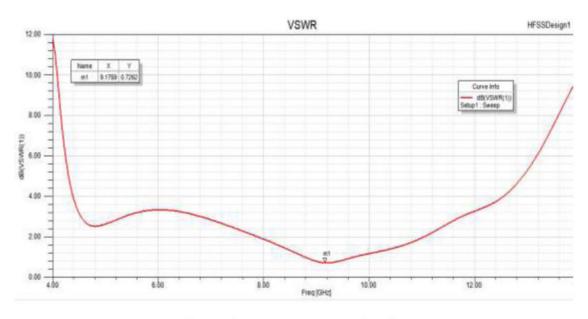
$$\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + k_z^2 = \varepsilon_r k_0^2 \tag{16}$$

$$k_z^2 = \varepsilon_r k_0^2 - \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 \tag{17}$$

नीचे दिए गए समीकरण में k_{z} का मान डालते ह्ए

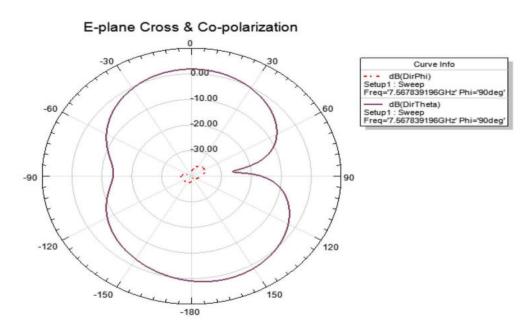

$$k_z \tan\left(\frac{k_z d}{2}\right) = \sqrt{k_0^2 (\varepsilon_r - 1) - k_z^2}$$
 (18)

अनुवादक आवृत्ति को ko समीकरण (1) को हल करके प्राप्त किया जा सकता है प्राप्त व्यापाकीकृत आवृत्ति होगी

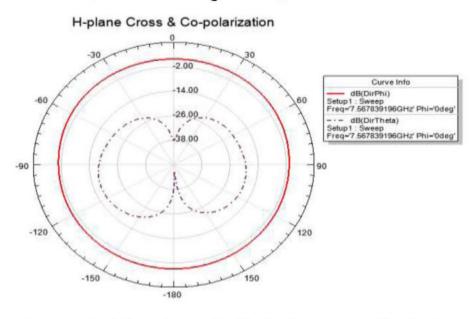

$$F = \frac{2\pi a f_0 \sqrt{\varepsilon_r}}{c} \tag{19}$$

प्रयोगात्मक परिणाम

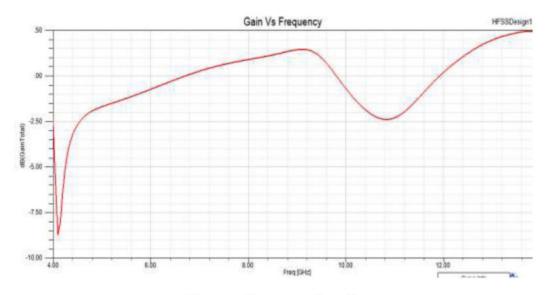
एंटीना की विशेषताओं और प्रदर्शन को तय करने के लिए अनुवादक आवृत्ति महत्वपूर्ण प्राचलों में से एक है। विशेषकर DR- में प्रतिबाधा मिलान एयर गैप की उपस्थिति के कारण बहुत ही संवेदनशील है, वायु-परिहार्य। चित्र 5 एंटीना की S11 आवृत्ति प्राचल के सापेक्ष निवेश विशेषताओं को चित्रित करता है। पूर्ण प्रतिबाधा मिलान 9.25 गीगाहर्ट्ज़ के केंद्र आवृत्ति के साथ 4.25 गीगाहर्ट्ज़ और 13.8 गीगाहर्ट्ज़ तक प्राप्त होता है और प्रतिबाधा बैंडविड्थ 95.87% है। इस बैंडविड्थ के भीतर स्रोत और एंटीना के बीच सही मिलान होता है, ताकि विकिरण प्रतिबिंब की स्थिरता न्यूनतम प्रतिबिंब गुणांक और लगभग 2 के VSWR के साथ बहुत अधिक होगी जैसा कि चित्र 6 में दिखाया गया है।



चित्र 5: प्लॉट लॉस बनाम आवृत्ति

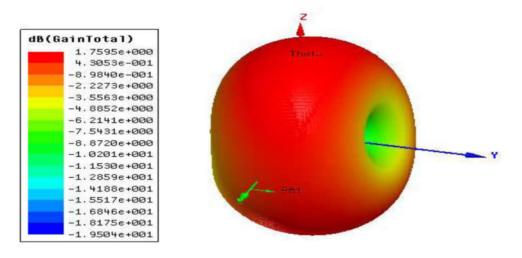

चित्र 6: वीएसडब्ल्यूआर बनाम आवृत्ति प्लॉट

जिस ध्रुवीकरण का एंटीना को विकीर्ण करने का गंतव्य है, उसे सह-ध्रुवीकरण कहा जाता है। सह-ध्रुवीय साइडलोब स्तर को सह-ध्रुवीय विकिरण पैटर्न के उच्चतम साइडलोब के रूप में लिया जाता है। चित्र 7- 7.56 GHz के ऑपरेटिंग आवृत्ति पर ई-प्लेन में एंटीना के विकिरण पैटर्न को दर्शाता है। यह देखा गया है कि क्रॉस और सह-ध्रुवीकरण के बीच का अंतर 30 डीबी से अधिक है।



चित्र 7: रेडिएशन पैटर्न ई-प्लेन सह और एंटीना के क्रॉस ध्वीकरण का संकेत देता है

चित्र-8 विकिरण पैटर्न को दर्शाता है जो एच-प्लेन सह और पार को दर्शाता है और 7.56 गीगाहर्ट्ज पर -24 डीबी का क्रॉस ध्रुवीकरण करता है। एच-प्लेन में विकिरण पैटर्न सममित प्रतीत होता है। एंटीना के व्यावहारिक पहलू पर विचार करते हुए क्रॉस ध्रुवीकरण अपरिहार्य है।



चित्र 8: उत्सर्जन पैटर्न एच-प्लेन सह और एंटीना के क्रॉस ध्रवीकरण का संकेत देता है

चित्र 9: वृद्धि बनाम आवृत्ति प्लॉट

चित्र-9 वृद्धि और आवृत्ति के बीच संबंध को इंगित करता है। यह देखा गया है कि उच्च बैंडविड्थ प्रतिक्रिया के कारण एंटीना का लाभ काफी कम है।

चित्र 10: गेन का 3-डी प्लॉट

5. निष्कर्ष

इस शोधपत्र में, आधुनिक वायरलेस एप्लिकेशन के लिए एक श्रेष्ठ और नए ब्रॉडबैंड परावैद्युत आयताकार अनुनाद एंटीना प्रस्तावित किया गया है। इस डिजाइन में, बाह्रय मिलान नेटवर्क और दोषपूर्ण आधारी तल को नियोजित करके व्यापक बैंडविड्थ का एहसास किया जा सकता है। प्रस्तावित एंटीना विकिरण विशेषताओं में बदलाव के बिना 4.25 गीगाहर्ट्ज से 13.09 गीगाहर्ट्ज

तक -10 डीबी से कम हानि के साथ 95.87% की स्थिर प्रतिबाधा बैंडविड्थ प्रदान करता है। इन सभी विशेषताओं के साथ यह एंटीना अल्ट्रा वाइडबैंड बेतार अन्प्रयोग के लिए उपयुक्त है।

संदर्भ

- [1] Simon Haykin, "Communication System" 3e Wiley.
- [2] Roger F. Harrington, "Time Harmonic Electromagnetic Fields", IEEE Press.
- [3] K. M. Luk, K. W. Leung, "Dielectric resonator antennas", Electronic and electrical engineering research studies.
- [4] R. K. Mongia, A. Ittipiboon, "Theoritical and experimental investigations on Rectangular Dielectric Resonator Antennas" IEEE transaction on antennas and propagation, Vol. 45. No.9 September 1997.
- [5] Y. Coulibaly, T. A. Denidni, "Broadband micro-strip fed dielectric resonator antenna for X-band applications" IEEE antenna and wireless propagation letters, Vol. 7, 2008.
- [6] T. A. Denidni and Z Weng, "Rectangular dielectric resonator antenna for ultra wideband applications" Electronics letters 19 Nov 2009 Vol. 45 No. 24.
- [7] Ahemed A Kishk, A. Ittipiboon, Y. M. M. Anter and M. Cuhehi "Slot excitation of the dielectric disk radiator," IEEE transaction on antennas and propagation, Vol. 43. No.2 February 1995.
- [8] S. A. Long, M. W. Mcallister and L. C. Shen,"The resonant cylindrical dielectric cavity antenn", IEEE transaction on antennas and propagation, Vol. 31. No.3 May 1983.
- [9] A. Petosa, A. Ittipiboon, Y. M. M. Anter, D. Roscoe, and M. Cuhahi, "Recent advances in Dielectric Resonator Antenna Technology," IEEE Antenna and Propagation Magazine, Vol. 40, No. 3, June 1998.
- [10] R. K. Mongia, A. Ittipiboon and M. Cuhehi, "Low profile dielectric resonator antennas using a very high permittivity material," Electronics letters, 18th August 1994 Vol.30 No.17.

सूक्ष्म जाल के लिए संकर प्रकाश वोल्टीय-डीजल प्रणाली के अधिकतम शक्ति बिंदु मार्गन पर समीक्षा

डॉ. अंजू खंडेलवाल

गणित विभाग

एस. आर. एम. एस. अभियांत्रिकी एव प्रौद्योगिकी महाविद्यालय, बरेली

ई-मेल: <u>dranju07khandelwal@gmail.com</u>

अनामिका गंगवार

इलेक्ट्रॉनिक्स और संचार अभियांत्रिकी विभाग एस. आर. एम. एस. अभियांत्रिकी एव प्रौद्योगिकी महाविद्यालय, बरेली ई मेल: anamika.nitttr2015@gmail.com

नाजिया परवीन

इलेक्ट्रॉनिक्स और संचार अभियांत्रिकी विभाग एस. आर. एम. एस. अभियांत्रिकी एव प्रौद्योगिकी महाविद्यालय, बरेली ई मेल: nazia.parveen@srms.ac.in

सार: इस समीक्षा पत्र में एक संकर प्रणाली कलन विधि प्रस्तावित है, यह अनुशंसित कलन विधि संकर घटकों द्वारा उत्पन्न अधिकतम शक्ति और प्रस्तावित ऊर्जा भंडारण प्रणाली पर विचार करके सिक्रिया की अधिकतम लागत को ध्यान में रखता है। यह प्रस्तावित संकर प्रणाली अधिकतम ऊर्जा बिंदु मार्गन (एमपीपीटी) तकनीकों को प्रदान करने के लिए एक साथ काम कर रहे गैर-नवीकरणीय ऊर्जा स्रोत (डीजल जिनत्र) प्रणाली के साथ अक्षय ऊर्जा स्रोत (प्रकाश-वोल्टीय) के संयोजन को शामिल करता है। विक्षोभ (परतुरब) और निरीक्षण (पी एंड ओ) कलन विधि, वृद्धिशील और चालन कलन विधि एंव अधिकतम शक्ति बिंदु मार्गन तकनीक का उपयोग दिष्ट धारा से दिष्ट धारा परिवर्तक के साथ प्रकाश-वोल्टीय वोल्टिक, डीजल जिनत्र का विश्लेषण करने के लिए किया गया है। इस प्रणाली में, एक संकर ऊर्जा प्रणाली के तकनीकी-आर्थिक विश्लेषण को पूरा किया गया।

कुंजी शब्द : अधिकतम ऊर्जा बिंदु मार्गन (एमपीपीटी) तकनीक, प्रकाश-वोल्टीय, डीजल जिनत्र, दिष्ट धारा सिध ।

प्रस्तावना

पिछले दशकों में कई प्रकार के गैर-पारंपरिक ऊर्जा स्रोत जैसे प्रकाश-वोल्टीय और पवन टरबाइन (डब्ल्यूटी) को स्वीकार किया हुआ है। गैर-पारंपरिक ऊर्जा स्रोत न केवल पर्यावरण में स्वच्छ और प्रचुर मात्रा में हैं, बल्कि अच्छी तरह से विकसित, लागत प्रभावी और व्यापक रूप से बढ़ते बिजली की मांग को संभालने के लिए उपयोग किए जाते हैं [1-3]. वर्तमान समय में सौर ऊर्जा, जीवाश्म ऊर्जा को बदलने के लिए कई राज्यों में एक पूर्वनियोजित अवसर है, इस तरह की अक्षय ऊर्जा द्निया के हर जगह विभिन्न प्रकार से कई रूपों में उपलब्ध है, लेकिन इसकी ऊर्जा, सभी ऊर्जा मांग को पूरा करने के लिए कम आपूर्ति में है। उत्पादन बढ़ाने के लिए ऊर्जा की आवश्यकता को पूरा करने के लिए, विज्ञान में विभिन्न शोध विकसित किए गए हैं जैसे कि अधिकतम ऊर्जा बिंदु मार्गन, एमपीपीटी नियंत्रक, और संकर ऊर्जा प्रणाली या जाल संबद्ध प्रणाली [4-5]. प्रकाश-वोल्टीय प्रतिरूप में विभिन्न प्रकार के श्रेणी समांतर सौर रंध्र शामिल होते हैं जो 30% से कम बिजली की दक्षता के साथ सूर्य विकिरण को विद्युत ऊर्जा (दिष्ट धारा) में परिवर्तित करते हैं। तापमान के अनुसार अधिकतम शक्ति हर बार धारा वोल्टता और ऊर्जा वोल्टता विशेषताओं के वक्र पर अरेखीय होती है, इसलिए एक अंतरापृष्ठ में परिवर्तक के साथ वर्धक परिवर्तक होता है जो कि प्रकाश-वोल्टीय प्रणाली और निर्गम प्रणाली के बीच स्थित होता है ताकि अधिकतम ऊर्जा बिंदु मार्गन (एमपीपीटी) को अनुवर्तन किया जा सके, दूसरी ओर सौर मार्गन प्रणाली दिन के दौरान गतिशील प्रकाश-वोल्टीय प्रतिरूप को सूरज की स्थिति का लंबवत रूप से पालन करने की अन्मति देता है, ताकि इसकी सतह पर अत्यधिक मात्रा में विकिरण इकट्ठा हो सके, परिणामस्वरूप शक्ति उत्पादन स्थैतिकी मापांक से बेहतर है [5-8]। भंडारण के लिए बैटरी संधारित्र के साथ गैर-पारंपरिक ऊर्जा स्रोत (प्रकाश-वोल्टीय) और गैर-नवीकरणीय ऊर्जा स्रोत (डीजल जिनत्र) को मिलाकर संकर ऊर्जा प्रणाली का गठन, आर्थिक, पर्यावरण के अनुकूल और बिजली की विश्वसनीय आपूर्ति प्रदान कर सकता है। कम नवीकरणीय ऊर्जा निवेश या उच्च लोड आवश्यकता की अवधि के लिए प्रणाली में डीजल जिनत्र का उपयोग प्रकाश-वोल्टीय के साथ बैटरी (रंध) को जोड़ने के लिए पूर्तिकर जिनत्र के रूप में कार्य करने के लिए किया गया है[9]।संकर ऊर्जा प्रणाली का नियंत्रण प्रचालन होने से गैर-रैखिक विशेषताओं और मूलभूत घटकों के संबंधित प्राचल भिन्नता के कारण एक रैखिक समस्या नहीं होती है। इस तरह की प्रणाली का इष्टतम संचालन नियंत्रण पारंपरिक नियंत्रकों का

उपयोग करके आसानी से पूरा नहीं किया जा सकता है, इसलिए बुद्धिमतापूर्ण नियंत्रक आवश्यक है [10]।

क्रियाविधि (निदर्शन गणितीय प्रणाली)

2.1 सौर सरणी जनित्र

सौर सरणी का अंतस्थ समीकरण (1) में प्रदर्शित किया गया है [11]

$$V_{A} = A V_{T} \ln \left[\left(I_{Ph} - I_{A} + I_{r} \right) / I_{r} \right] - I_{A} R_{s}$$
 (1)

जहां:

VA = सरणी अंतस्थ वोल्टता

IA = सरणी अंतस्थ धारा

I_{Ph} = सरणी सौर उत्पादन धारा

Ir = उत्क्रम संतृप्त धारा

Rs = सरणी श्रृंखला प्रतिरोध

A = आदर्श कारक

V_T = उष्मीय वोल्टता

यहाँ, सरणी अधिकतम शक्ति Pmax ,सरणी आवधिक धारा I_A के साथ सरणी आवधिक वोल्टता V_A के गुणन द्वारा प्राप्त की

$$P_{max} = V_{mp} . I_{mp}$$
 (2)
जहाँ

 V_{mp} = अधिकतम विद्युत वोल्टता

Imp = अधिकतम विद्युत धारा

2.2 डीजल जनित्र समूह

डीजल जिनत्र निवेश विद्युत ऊर्जा निवेश और उत्पादन और निर्गम विद्युत ऊर्जा में रैखिक संबंध है। सामान्य अंगूठे नियम के अनुसार, यह कथन है कि निष्क्रियता में ईंधन की खपत न्यूनतम बिजली पर लगभग 25% से 30% खपत है। डीजल संयंत्रों में डीजल इंजन और जिनत्र

के बीच एक चंगुल (क्लच) होता है। चंगुल (क्लच) डीजल इंजन को प्रारंभ और विराम करने के लिए प्रदर्शित होता है।

गति और ईंधन खपत की व्याख्या अवकल समीकरण (3) व (4) द्वारा प्रदर्शित है।

$$\frac{d\mathcal{C}}{dt} = \frac{\left[K_C(K_C.m_f - P_0) - D_d W_d - Td_{gen}\right]}{\text{Id}}$$
(3)

और

$$\frac{dmf}{dt} = \frac{\left[W_d - W_{ref} - \frac{m_f}{\delta}\right]}{T_d} \tag{4}$$

जहां

W_d इंजन की गति

W_{ref} नियंत्रक गति

δ नियंत्रक लिड्ध

T_d नियंत्रक समय

m_f डीजल ईंधन की खपत

Kc दहन की सतत दक्षता अविरत ज्वलन और दहन की खपत

Po मोटर चैंबर का निष्क्रिय दबाव

K_v आघात की मात्रा

Tp उत्पादित बलापूर्ण

Tf घर्षण बलापूर्ण

Tdgen जिनत्र और क्लच से उत्पन्न भार बलापूर्ण

D_d अविरत घर्षणात्मक हानि

Jd इंजन, क्लच और जनित्र का कुल जड़त्व आघूर्ण

2.3 बैटरी प्रतिमान (निदर्शन)

आवेश/ विसर्जन प्रक्रियाओं के दौरान प्रयुक्त बैटरी की धारा वोल्टता और ऊर्जा वोल्टता लिए सामान्य समीकरण

$$V_{B} = V_{\infty} \pm I_{B} R_{B}$$
 (5)

$$V_{B} = \left[V_{0} + K_{B} \frac{Q}{\frac{C_{T}}{1 + \alpha I B^{b}} (1 + \alpha_{C} \Delta T + \beta_{C} \Delta T^{2})} \right] \pm I_{B} \left[\frac{P_{1}}{1 + I_{B} P^{2}} + \frac{P_{3}}{\left[1 - \frac{Q}{C_{T}} \right] P_{4}} + P_{5} \right] (1 - \alpha_{T} \Delta T) \right]$$
 (6)

प्रतीकत्व

+ आवेश को निरूपित करता है |

विसर्जन को निरूपित करता है ।

Voc बैटरी विवृत परिपथ वोल्टता

R_B बैटरी आंतरिक प्रतिरोध

Vo प्रारंभिक प्राचल वोल्टता

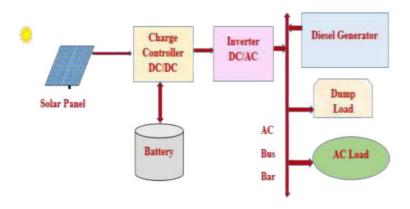
 $Q = I_B t Ah$

आपूर्ति

$$C = C_T(1 + \alpha_C \Delta T + \beta_C \Delta T^2)/(1 + aIB^b)$$

सामर्थ्य या क्षमता समीकरण

$$P_1/(1+I^P 2) + P_3/[1-Q/C_T]^P 4 + P_5$$

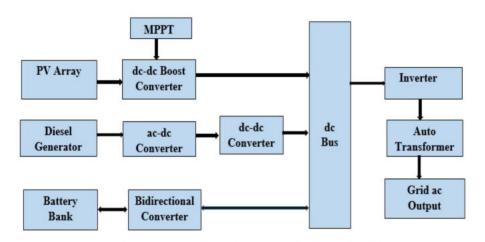

आंतरिक प्रतिरोध पद

जहां, a, b, V_0 , K_B , P_1 , P_2 , P_3 , P_4 , तथा P_5 संतुलन के मानदंड हैं α_r आंतरिक प्रतिरोध का तापमान गुणांक है, तथा $\Delta T = T - 25^\circ$

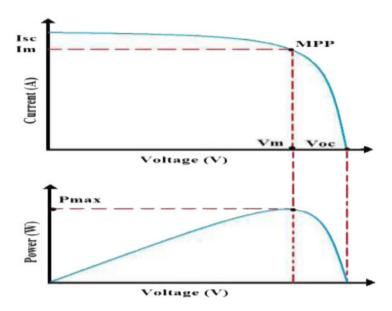
2.4 संकर ऊर्जा प्रणाली

भंडारण के लिए बैटरी संधारित्र के साथ गैर-पारंपरिक ऊर्जा स्रोत (प्रकाश-वोल्टीय) और गैर-नवीकरणीय ऊर्जा स्रोत (डीजल जिनत्र) को मिलाकर संकर ऊर्जा प्रणाली का गठन, आर्थिक, पर्यावरण के अनुकूल और बिजली की विश्वसनीय आपूर्ति प्रदान कर सकता है[12]। कम नवीकरणीय ऊर्जा निवेश या उच्च लोड आवश्यकता की अविध के लिए प्रणाली में डीजल जिनत्र का उपयोग प्रकाश-वोल्टीय के साथ बैटरी को जोड़ने के लिए पूर्ति कर जिनत्र के रूप में कार्य करने के लिए किया गया है।[13] प्रकाश-वोल्टीय सरणी में वर्तमान वोल्टेज सौर ऊर्जा की अत्यधिक अरेखीय भिन्नता के अनुसार घटने की विशेषता है। डीजल इंजन और बैटरी के संचालन को नियंत्रित करते है जब प्रकाश-वोल्टीय सरणी से उत्पादन शक्ति लोड को पूरा करने के लिए पर्याप्त नहीं होती है [14] वर्तमान समय में संकर ऊर्जा प्रणाली का सबसे आम अनुप्रयोग डीजल जिनत्र के विकास में

अक्षय ऊर्जा स्रोत और बैटरी संग्रह ,डीजल इंजन चालित जिनत्र के कार्याविध को कम करने के लिए हैं [15]।



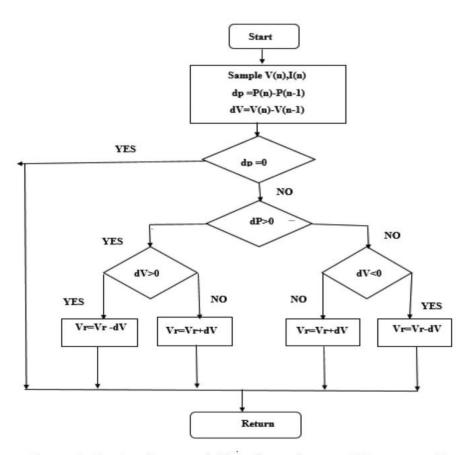
चित्र 1: व्यापक सकर प्रणाली


संपूर्ण संकर ऊर्जा प्रणाली में नवीकरणीय ऊर्जा (प्रकाश-वोल्टीय) प्रणाली एवं एक पारंपरिक (डीजल) ऊर्जा उत्पादन प्रणाली में शामिल है, तथा बैटरी में ऊर्जा भंडारण, एक दिष्ट धारा / प्रत्यावर्ती धारा संपरिवर्तित्र (आवश्यक शक्ति में उत्पन्न शक्ति के रूपांतरण),और एक प्रत्यावर्ती धारा / दिष्ट धारा (उत्पन्न एसी पावर के रूपांतरण के लिए तािक आप बैटरी चार्ज कर सकें)।प्रतीपक (इन्वर्टर) का उपयोग दिश है तभी इसे शक्ति परिवर्तक (पावर कनवर्टर) भी कहा जाता है, जो एसी और डीसी घटकों के बीच ऊर्जा का अनुरक्षण बनती है, क्योंकि प्रवाह विशिष्ट दिशा (प्रत्यावर्ती धारा से दिष्ट धारा और दिष्ट धारा से प्रत्यावर्ती धारा) में उपलब्ध है [16]।

3. अधिकतम ऊर्जा बिंदु मार्गन तकनीक का सिद्धांत

अधिकतम शक्ति बिंदु मार्गन को सामान्यतः एमपीपी मार्गन या एमपीपीटी के रूप में लिखा जाता है। अधिकतम ऊर्जा बिंदु मार्गन एक इलेक्ट्रॉनिक प्रणाली है जो सभी क्रिया संचालन समय के लिए अधिकतम सक्षम शक्ति देने के लिए प्रकाश-वोल्टीय प्रतिरूपक का संचालन करती है। सूर्य की अधिकतम शक्ति के लिए प्रतिरूपक की भौतिक गित से अधिकतम ऊर्जा को बिंदु मार्गन के प्रयोग से यांत्रिक मार्गन के तहत होती है जो अधिकतम ऊर्जा बिंदु मार्गन तकनीक से अलग है क्योंकि ये इलेक्ट्रॉनिक प्रणाली प्रकाश-वोल्टीय प्रतिरूपक के अधिकतम शक्ति के विद्युत मापदंडों को परिवर्तनीय करता है।[17-18]

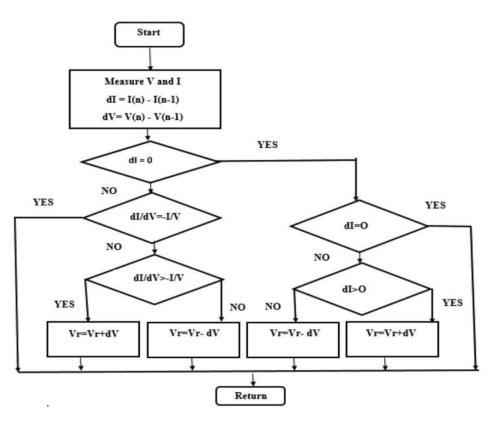
चित्र 2: प्रकाश-वोल्टीय-डीजल जनित्र के लिए अधिकतम ऊर्जा बिंदु मार्गन नियंत्रक का खण्ड आरेख



चित्र 3: ऊर्जा- वोल्टता एवं धारा - वोल्टता की विशेषता

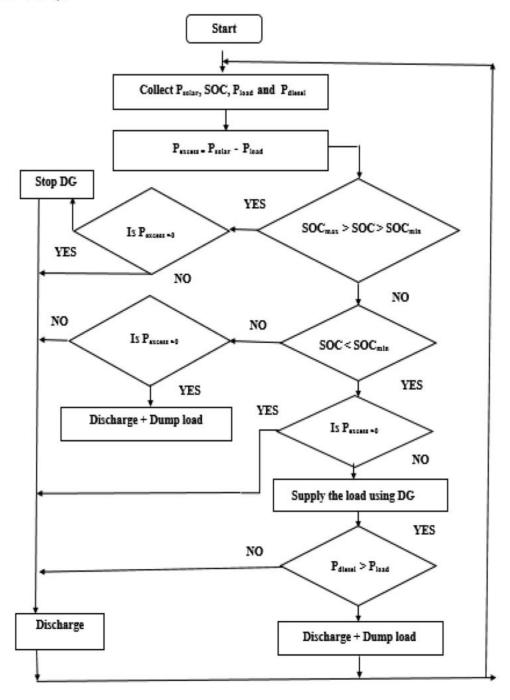
प्रकाश-वोल्टीय सरणी (नायिका) का निर्गम, धारा लोड की स्थिति पर निर्भर करता है। चित्र 3 में ऊर्जा- वोल्टता एवं धारा - वोल्टता की वर्तमान को विशेषताओं को दर्शाता है। विस्तृत शृंखला धारा और वोल्टता के अधिकतम ऊर्जा प्रदान करने वाले बिंदु को प्राप्त करना बहुत आवश्यक है। शिक्त की गणना को V और I के उत्पाद से प्राप्त किया जाता है। ऊर्जा को अधिकतम करने वाली बिंदु उपयोगकर्ताओं को प्रकाश बैटरी या रंध्र से अधिकतम सक्षम शिक्त निकालने में सक्षम बनाती है। इस बिंदु को अधिकतम ऊर्जा बिंदु (एमपीपी) कहा जाता है और इस बिंदु को प्राप्त करने की तकनीक को अधिकतम ऊर्जा बिंदु मार्गन तकनीक (एमपीपीटी) कहा जाता है।

3.1 क्षोभ और निरीक्षण (पी एंड ओ) कलन विधि तकनीक


अधिकतम शक्ति बिंदु मार्गन तकनीक, गड़बड़ी और अवलोकन या पहाड़ी की चढ़ाई कलन विधि पर आधारित है जब , वोल्टेज और शक्ति की विशेषताओं के अनुसार, शक्ति की तुलना एमपीपी वोल्टेज के बाईं $\frac{dp}{dv} > 0$ में एवं दाईं ओर, $\frac{dp}{dv} > 0$, चित्र 4 में दिखाया गया है। यदि प्रकाश वोल्टीय सरणी का क्रिया संचालन वोल्टेज किसी दिए गए दिशा में खराब हो गया है और $\frac{dp}{dv} > 0$, तो गड़बड़ी में ,अधिकतम गड़बड़ी और अवलोकन कलन विधि की ओर सरणी के क्रिया संचालन बिंदु को स्थानांतरित कर देता है, जो प्रकाश-वोल्टीय सरणी वोल्टेज को बनाए रखने के लिए जारी है। उसी दिशा मे , यदि $\frac{dp}{dv} > 0$ है, तो प्रचालन बिंदु में परिवर्तन, प्रकाश-वोल्टीय सरणी बिंदु को अधिकतम ऊर्जा बिंदु से दूर ले जाता है, और विक्षोभ और निरीक्षण (पी और ओ) कलन विधि गड़बड़ी की दिशा को उलट देता है [19-20] ।

चित्र 4: पी और ओ, अधिकतम ऊर्जा बिंदु मार्गन तकनीक कलन विधि का प्रवाह संचित्र

3.2 पारपरिक समावेशी निर्माण कलन विधि


एक उपयोगी अधिकतम ऊर्जा बिंदु मार्गन तकनीक कलन विधि, मार्गन गित और नियमित दशा के बीच संतुलन को प्रदर्शन करता है। इन आवश्यकताओं के अनुसार, परम्परागत समावेशी निर्माण कलन विधि का उपयोग किया जा सकता है, भले ही वह इस अध्ययन में विफल हो सकता है, यह अपने प्रदर्शन को बेहतर बनाने के लिए संशोधित परंपरागत समावेशी निर्माण कलन विधि के तथ्य में स्थापित अधिकतम ऊर्जा बिंदु मार्गन पर ऊर्जा - वोल्टता विशेषता का प्रवणता शून्य है। इसलिए, यह कलन विधि निम्नानुसार मॉडलिंग कर सकता है [21-23] यह कलन विधि अनुसूची (पैनल) के धारा और वोल्टेज को मापता है। यदि उपयोगिता अनुपात बढ़ता है और इसके विपरीत सैद्धांतिक रूप से, यदि अधिकतम ऊर्जा बिंदु पर पहुंच जाता है, तो अल्फा (α) का कोई अधिक गड़बड़ी नहीं होती है; तदनुसार, दोलनों में कमी आने से समावेशी निर्माण कलन विधि को मुख्य लाभ होता है। हालांकि, पारंपरिक परम्परागत समावेशी निर्माण कलन विधि एक अच्छा निर्णय लेने में विफल रहता है जब विकिरण तेजी से बढ़ता है।

चित्र 5: परंपरागत समावेशी निर्माण कलन विधि प्रवाह संचित्र

3.3 संकर ऊर्जा कलन विधि

संकर ऊर्जा कलन विधि का प्रदर्शन प्रकाश-वोल्टीय ऊर्जा प्रणाली और डीजल जिनत्र के विश्लेषण लिए किया गया है।

चित्र 6: संकर ऊर्जा कलन विधि का प्रवाह संचित्र

4. निष्कर्ष

इस कार्य में PV संकर ऊर्जा प्रणाली की जांच ,पूरे दिन के दौरान शक्ति रूपरेखा की भिन्नता के अनुसार प्रणाली के प्रत्येक स्रोत से उत्पन्न ऊर्जा का प्रबंधन की योजना करता है, एमपीपीटी नियंत्रक, प्रकाश वोल्टेज ऊर्जा की प्रचुर मात्रा में योगदान को साझा करता है जबिक एक ही समय में बैटरी इकाई की रक्षा के साथ डीजल प्रदर्शन की बंधकत्व भी है। लोड रूपरेखा के अनुसार, ऊर्जा के दोनो स्रोतों में ईंधन की खपत को कम करना और लंबे समय के संचालन के लिए भंडारण बैटरी की सुरक्षा प्रदान करना है।

संदर्भ

- Khan, M. J., & Mathew, L. (2017). Maximum power point tracking control method for a hybrid PV/WT/FC renewable energy system. International Journal of Control Theory and Applications, Serials Publications 10(6), 411-424.
- [2] Rezk, H., & Eltamaly, A. M. (2015). A comprehensive comparison of different MPPT techniques for photovoltaic systems. Solar Energy, 112, 1-11.
- [3] Nema, P., Nema, R. K., & Rangnekar, S. (2009). A current and future state of art development of hybrid energy system using wind and PV-solar: A review. Renewable and Sustainable Energy Reviews, 13(8), 2096-2103.
- [4] Nafeh, E. S. A. (2009). Fuzzy logic operation control for PV-diesel-battery hybrid energy system. The Open Renewable Energy Journal, 2(1), 70-78.
- [5] Soon, J. J., Chia, J. W., Aung, H., Lew, J. M., Goh, S. T., & Low, K. S. (2018). A Photovoltaic Model Based Method to Monitor Solar Array Degradation On-Board a Microsatellite. IEEE Transactions on Aerospace and Electronic Systems, 54(5), 2537-2546.
- [6] Silva Day, Renga A. P. C., Meo D., M., & Marsan, M. A. (2017). The impact of quantization on the design of solar power systems for cellular base stations. IEEE Transactions on Green Communications and Networking, 2(1), 260-274.
- [7] Dehbonei, H., Lee, S. R., & Nehrir, H. (2009). Direct energy transfer for high efficiency photovoltaic energy systems Part I: Concepts and hypothesis. IEEE Transactions on Aerospace and Electronic Systems, 45(1), 31-45.
- [8] Dufo-López, R., & Bernal-Agustín, J. L. (2005). Design and control strategies of PV-Diesel systems using genetic algorithms. Solar Energy, 79(1), 33-46.
- [9] Nabulsi Al, A., & Dhaouadi, R. (2012). Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control. IEEE Transactions on Industrial Informatics, 8(3), 573-584.
- [10] Esram, T., & Chapman, P. L. (2007). Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion, 22(2), 439-449.
- [11] Hua, C., & Shen, C. (1998, May). Study of maximum power tracking techniques and control of DC/DC converters for photovoltaic power system. In PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No. 98CH36196), IEEE, 1 86-93.
- [12] Kant, K., Jain, C., & Singh, B. (2017). A hybrid diesel-windpv-based energy generation system with brushless generators. IEEE Transactions on Industrial Informatics, 13(4), 1714-1722.
- [13] Zhang, J., Huang, L., Shu, J., Wang, H., & Ding, J. (2017). Energy management of PV-diesel-battery hybrid power system for island stand-alone micro-grid. Energy Procedia, 105, 2201-2206.

- [14] Loh, P. C., Li, D., Chai, Y. K., & Blaabjerg, F. (2013). Autonomous control of interlinking converter with energy storage in hybrid AC–DC microgrid. IEEE Transactions on Industry Applications, 49(3), 1374-1382.
- [15] Saha, N. C., Acharjee, S., Mollah, M. A. S., Rahman, K. T., Rafi, F. H. M., Rabin, M. J. A., & Samad, M. A. (2013, May). Modeling and performance analysis of a hybrid power system. In 2013 International Conference on Informatics, Electronics and Vision (ICIEV) IEEE, 1-5.
- [16] Ashok, S. (2007). Optimised model for community-based hybrid energy system. Renewable Energy, 32(7), 1155-1164.
- [17] Moradi, M. H., & Reisi, A. R. (2011). A hybrid maximum power point tracking method for photovoltaic systems. Solar Energy, 85(11), 2965-2976.
- [18] Patel, H., & Agarwal, V. (2008). MATLAB-based modeling to study the effects of partial shading on PV array characteristics, IEEE Transactions on Energy Conversion, 23(1), 302-310.
- [19] Bahrami, A., & Okoye, C. O. (2018). The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere, Renewable and Sustainable Energy Reviews, 97, 138-151.
- [20] Villalva, M. G., Gazoli, J. R., & Ruppert Filho, E. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5), 1198-1208.
- [21] Tey, K. S., & Mekhilef, S. (2014). Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level, Solar Energy, 101, 333-342.
- [22] Liu, F., Duan, S., Liu, F., Liu, B., & Kang, Y. (2008). A variable step size INC MPPT method for PV systems. IEEE Transactions on Industrial Electronics, 55(7), 2622-2628.
- [23] Khan, M. J., Chatterji, S., Mathew, L., & Sharma, A. (2014). A survey of various maximum power point tracking techniques used in solar photovoltaic system. Excel India Publishers, New Delhi, 283.
- [24] De Brito, M. A. G., Galotto, L., Sampaio, L. P., e Melo, G. D. A., & Canesin, C. A. (2012). Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Transactions on Industrial Electronics, 60(3), 1156-1167.
- [25] Li, J., & Wang, H. (2009, April). Maximum power point tracking of photovoltaic generation based on the fuzzy control method. In 2009 International Conference on Sustainable Power Generation and Supply, IEEE, 1-6.

जीवाण्विक मस्तिष्कावरण शोध के दौरान प्रमस्तिष्कीय शिरिकाओं में रक्त प्रवाह पर गणितीय निदर्श

वीरेंद्र उपाध्याय

काशी प्रसाद बर्रोह

भौतिक विज्ञान विभाग महात्मा गांधी चित्रकूट ग्रामोदय विश्वविद्यालय चित्रकूट, सतना भौतिक विज्ञान विभाग महात्मा गांधी चित्रकूट ग्रामोदय विश्वविद्यालय चित्रकूट, सतना

सार: इस शोध पत्र में जीवाण्विक मस्तिष्कावरण शोध (जैविक मैनिंजाइटिस) के दौरान मानव प्रमस्तिष्क रोग संचरण प्रणाली का वर्णन किया गया है। मस्तिष्क संचरण प्रणाली मानव संचरण की उप-प्रणाली है, और इसमें रक्त की दो अवस्थाओं पर विचार किया गया है। एक जीवद्रव्य है तथा दूसरी लाल रक्त कोशिकाएं हैं। प्रमस्तिष्कीय शिरिकाओं की रक्त शिराएँ सामान्यतः 16-20 माइक्रो मीटर व्यास की अत्यंत छोटी होती हैं। रक्त शिराएँ की संपूर्ण लंबाई 4-6 माइक्रो मीटर होती है। रक्त शिराएँ पूर्व में रक्त कोशिकाओं से शुरू होकर शिराओं तक जाती हैं। समस्या का सूत्रीकरण प्रदिश प्रारूप में किया गया है। प्रयुक्त हल तकनीक वैश्लेषिक एवं संख्यात्मक है। प्रायोगिक आधार पर प्राप्त क्लिनिक रोग लक्षण आंकड़ों का गणतीय विश्लेषण किया गया है। रोग लक्षण (क्लिनिकल) आंकड़ों का लेखाचित्रीय प्रस्तुतीकरण में हिमैटोक्रिट की भूमिका रक्त दाब अवनयन के निर्धारण में स्पष्ट है।

कुंजी शब्द : जीवाण्विक मस्तिष्कावरण शोध (जैविक मैनिंजाइटिस), शिरिकाओ, लोहित कोशिका मापी

प्रस्तावना

मस्तिष्क रक्त प्रवाह मस्तिष्क की धमनियों और प्रमस्तिष्क को आपूर्ति करने वाली नसों के नेटवर्क के माध्यम से रक्त की गति है। बड़ी धमनियाँ जिनमें मोटी दीवारें होती हैं या जिनके भीतर सूक्ष्म परिसंचरण होता है, जो गैर-न्यूटनी होती है। वयस्क के भीतर प्रमस्तिष्क रक्त प्रवाह की दर आमतौर पर 750 मिलीलीटर प्रति मिनट होती है, जो प्रवाह दर का 15-20%

प्रतिनिधित्व करती है। यह प्रति मिनट प्रमस्तिष्क ऊतक के सौ ग्राम प्रति 50 से 54 मिलीलीटर रक्त के औसत के बराबर है। सीबीएफ को प्रमस्तिष्क की उपापचयी मांगों को पूरा करने के लिए घनिष्ठतः नियंत्रित किया जाता है। धमनियां ऑक्सीजन युक्त रक्त, ग्लूकोज, और वैकल्पिक पोषक तत्व मस्तिष्क तक पहुंचाती हैं, और शिराओं को भी कार्बन डाइऑक्साइड, लैक्टिक यौगिक और विभिन्न उपापचयी उत्पादों को हटाते हुए ऑक्सीजन को रक्त में हृदय तक वापस ले जाती हैं। चूँकि मस्तिष्क अपनी रक्त आपूर्ति में किसी तरह के समझौते का खतरा नहीं लेता है, इसलिए मस्तिष्क संवहनी प्रणाली में कई सुरक्षा उपायों के साथ-साथ रक्त वाहिकाओं की जैविक प्रक्रिया भी होती है और इस सुरक्षा की विफलता के कारण जीवाण्विक मस्तिष्कावरण शोध जैसी बीमारी भी हो सकती है। प्रमस्तिष्कीय परिसंचरण करने वाले रक्त की मात्रा को प्रमस्तिष्कीय रक्त प्रवाह (सीबीएफ) के रूप में जाना जाता है।

1.1 प्रमस्तिष्कीय शिरिकाओं में रक्त प्रवाह वितरण

प्रमस्तिष्कीय शिरा बहुत छोटी नस होती है, जो आमतौर पर 16 से 20 माइक्रो मीटर व्यास की होती है। मानव मस्तिष्क में शिरिकाओं की कुल लंबाई 4 से 6 माइक्रो मीटर है। रक्त शिराएँ पूर्व में रक्त कोशिकाओं से शुरू होकर शिराओं तक जाती है। नसों से कई शिराएँ जुड़ती हैं। शिरिकाओं अन्तः स्तर (एंडोथेलियम) की दीवारों से युक्त होती हैं, कुछ मांसपेशियों की कोशिकाओं और लोचदार तंतुओं के साथ एक पतली मध्य परत, साथ ही संयोजी ऊतक तंतुओं की एक बाहरी परत होती है जो बहुत बाहय पतली ट्यूनिका का गठन करती है। शिरिकाओं के साथ-साथ कोशिकाएं उत्प्रवास या कोशिकापारण (डायपेडिसिस) की प्राथमिक स्थल (साइट) हैं, जिसमें पूरे रक्त कोशिकाएं वाहिकाओं के अन्तः अस्तर संमंधी या अंतः कला (एंडोथेलियल) स्तर का पालन करती हैं और फिर ऊतक तरल पदार्थ में प्रवेश करने के लिए दबाव डालती हैं।

1.2 रक्त की संरचना

मानव रक्त, जीवद्रव्य (प्लाज्मा) और गठित तत्वों से बना है। जीवद्रव्य (प्लाज्मा), जो 55% रक्त द्रव का गठन करता है, ज्यादातर मात्रा में 92% पानी होता है और इसमें विघटित प्रोटीन, ग्लूकोज, खिनज आयन, हार्मोन और रक्त कोशिकाएं होती हैं। रक्त कोशिकाओं विशेष रूप से लाल रक्त कोशिकाओं (जिन्हें RBC या एरिथ्रोसाइट्स भी कहा जाता है) और श्वेत रक्त कोशिकाओं, श्वेत कोशिका (ल्यूकोसाइट्स) और रक्त बिंबाणु (प्लेटलेट्स) शामिल होती हैं। एक

लोहित कोशिका (एरिथ्रोसाइट) की औसत मात्रा लगभग 40 से 45% और सभी रक्त कोशिकाओं के 99% से अधिक का प्रतिनिधित्व करती है। रक्त में लाल रक्त कोशिकाओं (आरबीसी) की मात्रा प्रतिशत (वॉल्यूम%) को लोहित कोशिकामापी (हेमेटोक्रिट) कहा जाता है। पुरुषों का लोहित कोशिकामापी (हेमेटोक्रिट) औसतन लगभग 42 है, जबिक महिलाओं का औसतन लगभग 38 है। लाल रक्त कोशिका अर्धवृत कण हैं, रक्त के वेग को बढ़ाती हैं और इसका एक तरल पदार्थ के व्यवहार पर प्रभाव पड़ सकता है। सामान्य रक्त की चिपचिपाहट, पानी की चिपचिपाहट से लगभग तीन गुना अधिक है। यह बताया गया है कि जीवद्रव्य न्यूटनी द्रव जैसा व्यवहार करता है जबिक संपूर्ण रक्त गैर-न्यूटनी चिरत्र दिखाता है। रक्त बिबाणु रक्त के थक्के तंत्र का एक महत्वपूर्ण घटक हैं । सफ़ेद कोशिकाओं और रक्त बिबाणु की पूरी मात्रा-एकाग्रता केवल 1% (एन. बेस्सोव आदि, 2016) के लगभग होती है। यहाँ हमने रक्त के केवल दो प्रावस्थायों पर विचार किया है। जिनमें से एक लाल रक्त कोशिका है और एक अन्य प्रावस्था जीवद्रव्य है।

1.3 जीवाण्विक मस्तिष्कावरण का वर्णन

मस्तिष्कावरण तानिका की सूजन है, जो मस्तिष्क और रीढ़ की हड्डी को आच्छादित करती है। ऐसा सबसे अधिक बार संक्रमण (बैक्टीरिया, वायरल या फंगल) के कारण होता है। जीवाण्विक मस्तिष्कावरण शोध बच्चों और 60 से अधिक उम्र के लोगों में आम है। इसके अलावा, कमजोर प्रतिरक्षा प्रणाली वाले लोग जीवाण्विक मस्तिष्कावरण शोध के लिए अधिक जोखिम वाले होते हैं। यह बीमारी ज्यादातर ऐसे समुदायों / समाजों में फैलती है जो भीड़-भाड़ वाले इलाकों में रहते हैं। (जैसे पुलिस कर्मचारी, पुलिस सेल, कॉलेज के छात्र, सैन्य कर्मचारी और जेल)। जीवाण्विक मस्तिष्कावरण शोध से जुड़ा लक्षण बुखार, सिरदर्द, शरीर में दर्द, थकान और नींद आना हो सकता है। बाद में होने वाले लक्षण मतली, उल्टी, भ्रम, कड़ी गर्दन और प्रकाश की संवेदनशीलता हैं। शिशुओं में, बुखार, बेहोशी, खाने से इनकार करना, जागने में कठिनाई, और बच्चे के सिर पर नरम स्थान की सूजन शामिल हैं। जीवाण्विक मस्तिष्कावरण से संक्रमण मस्तिष्क की क्षति, सुनने की हानि और सीखने की अक्षमता जैसी स्थायी विकलांगता का कारण बन सकता है। मस्तिष्कावरण शोध के लिए प्राथमिक परीक्षण एक कटि वेध है। जीवाण्विक मस्तिष्कावरण को अस्पताल में दवा के साथ उपचार और सघन उपचार की आवश्यकता होती है।

2. वास्तविक मॉडल

2.1 संदर्भ के तंत्र का विकल्प

हमने रक्त प्रवाह की समस्या की व्यापकता की किठनाई को ध्यान में रखते हुए संचारित रक्त की प्रावस्था के गणितीय मॉडिलंग के लिए संदर्भ के एक तंत्र का चयन किया है। हमने त्रिविमीय अभिलांबिक विक्रिय निर्देशांक प्रणाली को व्यापक किया है, जिसे संक्षेप में E3 के रूप में 3-विमीय यूक्लिडियन सिमष्ट कहा जाता है। हमने प्रदिशीय रूप में रक्त के प्रवाह से संबंधित मात्रा की व्याख्या की है जो तुलनात्मक रूप से अधिक यथार्थवादी है। इस प्रकार जैवभौतिक नियमो ने किसी भी निर्देशांक प्रणाली में पूरी तरह से अच्छी पकड़ बनाई है, जो अब की सत्यता के लिए सत्य सिद्ध हुई है, माना कि निर्देशांक अक्ष OX^1 है जहां O मूलबिंदु और मूर्धांक है i=1,2,3 माना है X^1 अंतरिक्ष में किसी भी बिंदु P का समन्वय निर्देशांक है। स्थित के गणितीय विवरण में यदि चल माध्य फलन रक्त के प्रभाव से प्रभावित होता है तो रक्त के वेग का बंटन $V^k = V^k$ (X^1 , t), k=1,2,3 है और रक्त की किही भी दो थर्मीडायनामिक राशियों से संबंधित है।

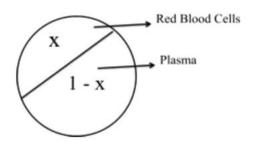
2.2 प्राचलों का चयन

चूंकि रक्त गैर-न्यूटनी तरल पदार्थ है, इसलिए हम तरल पदार्थों के लिए निम्नलिखित संयोजक समीकरण का उपयोग कर रहे हैं :

$$\tau = \eta e^n$$

यदि n=1 है तो द्रव की प्रकृति न्यूटनी है अन्य मानों के लिए तरल पदार्थ गैर-न्यूटनी है। जहां, τ को प्रतिबल से निरूपित किया जाता है, e को विकृति दर से और n को प्राचल द्वारा पिरभाषित किया जाता है| ये समीकरण गित के समीकरण के रूप में उपयोग किए जाते हैं। इस अध्ययन में पांच प्राचलों का उपयोग किया गया है लेकिन वेग के तीन प्राचल घटकों का उपयोग प्रायः वेग, दबाव P और घनत्व ρ (वि. उपाध्याय, 2000) के रूप में किया जाता है।

2.3 संयोजक समीकरण का चयन


हम दो प्रावस्थाओं में रक्त प्रवाह की शिराओं के माध्यम से उपयोग करने हेतु निम्नलिखित संयोजक समीकरण को ले रहे है-

$$T' = \eta_m e^n + T_p (T' \geq T_p)$$
 जहां, T_p लब्ध प्रतिबल है।

जब विकृति दर $e=(T'< T_p)$, है तो एक कोर क्षेत्र बनता है जो प्लग की तरह बहता है (वि. उपाध्याय, 2000)।

2.4 दो प्रावस्था रक्त की मात्रा का संजोयन

श्रीवास्तव मनोज आदि, (2012) ने रक्त में दो प्रावास्थाओं को माना है। रक्त कोशिकाओं की उपस्थिति से प्रवाह प्रभावित होता है। यह प्रभाव रक्त कोशिकाओं द्वारा अध्यापित मात्रा का समानुपाती होता है।

चित्र 2: एक डकाई मात्रा

माना इकाई मात्रा (चित्र 1) में रक्त कोशिकाओं द्वारा आच्छादित भाग X है X Ht / 100 द्वारा प्रतिस्थापित कर दिया जाता है, जहां Ht रक्त कोशिकाओं का आयतन प्रतिशत का हेमाटोक्रिट है। फिर जीवद्रव्यों द्वारा आच्छादित किए जाने वाला आयतन भाग (1-X) होगा। यदि जीवद्रव में कोशिकाओं का द्रव्यमान अनुपात r है तो स्पष्ट रूप से:

$$r = \frac{X_{\rho_c}}{(1 - X)\rho_p}$$

जहां ρ_c और ρ_p क्रमशः रक्त कोशिकाओं और जीवद्रव्य (प्लाज्मा) के घनत्व हैं। आमतौर पर यह द्रव्यमान अन्पात स्थिर नहीं होता है; तब भी इसे वर्तमान संदर्भ में स्थिर माना जा सकता है।

गणितीय मॉडलिंग / संरूपण

हमने माना है कि वाहिकाओं में रक्त का प्रवाह एक क्रमिक वृतों में सिकुड़ने वाली संचरण प्रणाली है क्योंकि रक्त में तरल पदार्थ की दो परतें होती हैं, जबिक वाहिकाओं के परिधीय क्षेत्रों में रक्त का प्रवाह न्यूटनी है। रक्त तरल रूप में है और यह गैर- न्यूटनी है। यद्यपि रक्त से गैर- न्यूटनी द्रव है, तथिप गित के समीकरण को विकसित करने के लिए (सिंह और पांडे, 1986), हम आदर्श तरल पदार्थ के एक मॉडल से शुरू करते हैं। द्रव गितिकी का दूसरा महत्वपूर्ण सिद्धांत संवेग संरक्षण है। गित का समीकरण इस सिद्धांत पर आधारित है। इस सिद्धांत के अनुसार

किसी भी द्रव की संवेग प्रणाली की कुल गति को बाहय बल की अनुपस्थिति में संरक्षित किया जाता है।

$$\frac{dp}{dt} + P - F_{v(viscosity)} = 0$$
(बाहरी बल)

रक्त को दो प्रावस्थाओं के समांगी मिश्रण के रूप में माना जा सकता है। हम पदार्थ के संरक्षण के सिद्धांत की गणितीय अभिव्यक्ति के रूप में सांतत्य के मूल समीकरण को प्राप्त करते हैं।

सांतत्य का समीकरण

यदि प्लाज्मा में कोशिकाओं का द्रव्यमान अनुपात r है तो स्पष्ट रूप से:

$$r = \frac{X_{\rho_c}}{(1 - X)\rho_p} \tag{1}$$

जहां ho_c और ho_p क्रमशः रक्त कोशिकाओं और जीवद्रव्य (प्लाज्मा) के घनत्व हैं। आमतौर पर यह द्रव्यमान अनुपात स्थिर नहीं होता है; तब भी इसे वर्तमान संदर्भ में स्थिर माना जा सकता है।

रक्त कोशिकाओं और प्लाज्मा अर्थात रक्त कोशिकाओं की दोनों प्रावस्थाएँ उभय वेग के साथ संचित होती हैं, कैंपबेल और पिचर ने इस स्थिति के लिए एक मॉडल प्रस्तुत किया है। इस मॉडल के अनुसार, हम दो प्रावस्थाओं मे रक्त को अलग-अलग मान रहे हैं। प्रमस्तिष्क संचार प्रणाली में द्रव्यमान के संरक्षण के सिद्धांत, दो प्रावस्थाओं के लिए सांतत्य समीकरण निम्नानुसार हैं

$$\frac{\partial X_{\rho_c}}{\partial t} + \left(X_{\rho_c} V^i\right)_{,i} = 0 \tag{2}$$

$$\frac{\partial (1-X)\rho_p}{\partial t} + (1-X)X_{\rho_c}V^i)_{,j} = 0 \tag{3}$$

जहां V दो प्रावस्थाओं रक्त कोशिकाओं और जीवद्रव (प्लाज्मा) का उभय वेग है। हम रक्त के एक समान घनत्व ho_m को निम्नानुसार परिभाषित करते हैं।

$$\frac{1+r}{\rho_m} = \frac{r}{\rho_c} + \frac{1}{\rho_p} \tag{4}$$

$$\frac{\partial \rho_m}{\partial t} + \left(\rho_m V^i\right)_{,i} = 0 \tag{5}$$

रक्त प्रवाह के लिए गति का समीकरण

रक्त की दो प्रावस्थाओं के बीच द्रवगितकी दबाव P को एक समान माना जा सकता है क्योंकि दोनों प्रावस्थाएँ अर्थात रक्त कोशिकाएं और प्लाज्मा कोशिकाएं हमेशा रक्त में संतुलन की स्थिति में होती हैं। रक्त कोशिकाओं के श्यानता गुणांक को η_c होना और मस्तिष्क परिसंचरण प्रणाली में संवेग के संरक्षण के सिद्धांत को लागू करना, हमें रक्त कोशिकाओं की दो प्रावस्थाओं के लिए गित का समीकरण प्रदान करते है।

$$\partial X_{\rho_c} \frac{\partial V^i}{\partial t} + (X_{\rho_c} V^i) V^i, j = -X_p, j g^{ij} + X_{\eta_c} (g^{ij} V^i, k), j$$
(6)

इसी प्रकार, श्यानता गुणांक प्लाज्मा को प्लाज्मा के लिए गति का समीकरण बनाने के लिए निम्नानुसार होगा-

$$(1 - X)_{\rho_c} \frac{\partial v^i}{\partial t} + \{ (1 - X)_{\rho_c} V^j \} V^i, j = -(1 - X)_p, j g^{ij} + (1 - X)_{\eta_c} (g^{jk} V^i, k), j$$
 (7)

अब समीकरण (6) और (7) को जोड़ने और संबंध (4) का उपयोग करते हुए, दोनों प्रावस्थाओं के साथ रक्त प्रवाह के लिए गति का समीकरण निम्नान्सार होगा-

$$\eta_m \frac{\partial V^i}{\partial t} + (\rho_m V^i) V^i, j = -P, j + \eta_m (g^{jk} V^i, k), j$$
(8)

जहां $\eta_m = X_{\rho_c} + (1-X)\rho_p$, दो प्रावस्थाओं के मिश्रण के रूप में रक्त का श्यानता गुणांक है। इस स्थिति में, रक्त कोशिका अक्ष पर रोलेक्स का निर्माण करती है। इसलिए एक लब्ध प्रतिबल पैदा होता है। हालांकि यह लब्ध प्रतिबल बहुत छोटा होता है, फिर भी रक्त की श्यानता लगभग दस गुना बढ़ जाती है।

हर्शेल बल्कली नियम शिराओं के माध्यम से दो प्रावस्था रक्त प्रवाह के लिए अच्छा है और तब संयोजक समीकरण निम्नानुसार है-

$$T' = \eta_m e^n + T_p ig(T' \geq T_p ig)$$
 जहां, T_p लब्ध प्रतिबल है।

जब विकृति दर $e=(T'< T_p)$ है तो एक क्रोड क्षेत्र बनता है जो प्लग की तरह ही बहता है। प्लग की त्रिज्या r_p है। प्लग की सतह पर प्रतिबल क्रिया T_p' होगी। प्लग पर कार्य करने वाले बल को इसके बराबर करने पर, हमें मिलता है:

व्यापकीकरण के अनुसार,

$$T^{ij} = -Pg^{ij} + T_e^{ij}$$
 (9)
जहाँ $T^{ij} = \eta_m(e^n)^n$ जबिक $e^{ij} = \left(g^{jk}V_{,k}^j + g^{jk}V_{,k}^j\right)$

जहां सभी प्रतीकों का अपना सामान्य अर्थ है। अब हम हर्शेल बल्कली के प्रवाह के मूल समीकरण पर विचार करते हैं।

सांतत्य का समीकरण

$$\frac{1}{\sqrt{g\sqrt{(gV^i)_{,i}}}} = 0 \tag{10}$$

गति का समीकरण

$$\rho_m \frac{\partial \mathbf{v}^i}{\partial t} + \rho_m \mathbf{v}^i \mathbf{v}_{,j}^{\ i} = -T_{e,j}^{\ ij}$$

जहां सभी प्रतीकों का अपना सामान्य अर्थ है।

3.1 विश्लेषण

चूंकि रक्त वाहिकाएं बेलनाकार होती हैं, इसलिए उपर्युक्त शाषी समीकरणों को बेलनाकार निर्देशांकों में बदलना है। जैसा कि हम पहले से जानते हैं:

$$x^1 = r, \qquad x^2 = \theta, \qquad x^3 = z,$$

बेलनाकार निर्देशांकों में दूरीक प्रदिश का आव्यूह निम्नानुसार है:

$$\begin{bmatrix} \mathbf{g}_{ij} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

जबिक संयुग्म दूरीक का आव्यूह निम्नानुसार है:

$$\left[\mathbf{g}^{ij} \right] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/r^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

जबिक द्वितीय प्रकार के क्रिस्टोफेल के प्रतीक निम्नलिखित हैं:

$${1 \choose 2} = -r, \; {2 \choose 2} = {1 \choose 1} = {1 \choose 1} = {1 \choose r}$$
 शेष अन्य शून्य है।

रक्त प्रवाह के वेग के प्रतिपरिवर्ती और भौतिक घटकों के बीच संबंध निम्नानुसार होगा:

$$\sqrt{g_{11}\,v^1}=v_r\Rightarrow v_r=v^1$$

$$\sqrt{g_{22}\,v^2}=v_\theta\Rightarrow v_\theta=rv^2$$
 और $\sqrt{g_{33}\,v^3}=v_z\Rightarrow v_z=v^3$

पुनः $-p_{,j}g^{ij}$ के भौतिक घटक $-\sqrt{g_{ii}}~p_{,j}g^{ij}$ हैं अब, समीकरण (9) और (10) को बेलनाकार रूप में बदल दिया जाता है ताकि शक्ति नियम के रूप में हल करने के लिए हमें निम्नलिखित प्राप्त होते है

सांतत्य समीकरण

$$\frac{\partial V}{\partial Z} = 0$$

गति समीकरण

r- घटक:

$$-\frac{\partial p}{\partial r} = 0$$

θ - घटक:

0 = 0

z- घटक:

$$0 = -\frac{\partial p}{\partial z} + \frac{\eta_m}{r} \left[r \left[\frac{\partial v_r}{\partial r} \right]^n \right]$$

यहां इस तथ्य को ध्यान में रखा गया है कि रक्त संबंधित शिराओं में अक्षीय रूप से सममित रूप से प्रवाहित होता है, अर्थात $V_0=0$ और V_r,V_z और p=p(z) तथा

$$0 = -\frac{\partial p}{\partial z} + \frac{\eta_m}{r} \left[r \left[\frac{\partial v_r}{\partial r} \right]^n \right] \tag{11}$$

चूंकि दबाव प्रवणता $-\frac{\partial p}{\partial z} = P \, \stackrel{?}{r},$

$$r\left[\frac{d\mathbf{v}}{dr}\right]^n = -\frac{p_{r^2}}{2\eta_m} + A$$
, जहाँ $r = 0, V = V_0$ पर $A = 0$ सीमा प्रतिबंध लगाते हैं।
$$\Rightarrow -\frac{d\mathbf{v}}{dr} = \left[\frac{p_r}{2\eta_m}\right]^{1/n} \quad \left[\frac{p_r}{r}\right]^{1/n} \quad \text{अब } \frac{p_r}{z} \text{ को } r - r_p \quad \text{से बदलें}$$

$$\Rightarrow \frac{d\mathbf{v}}{dr} = -\left(\frac{p_r}{2\eta_m}\right)^{\frac{1}{n}} (r - r_p)^{\frac{1}{n}}$$
 (12)

बिना फिसलन सीमा प्रतिबंध r = R पर V = 0 के तहत समीकरण (12) से समाकलन करने पर मिलता है:

$$v = \left(\frac{P}{2\eta_m}\right)^{\frac{1}{n}} \frac{n}{n+1} \left[\left(R - r_p\right)^{\frac{1}{n+1}} \right] - (r - r_p)^{\frac{1}{n+1}}$$
 (13)

$$v_p = \frac{n}{n+1} \left(\frac{P}{2\eta_m}\right)^{\frac{1}{n}} (R - r_p)^{\frac{1}{n}+1}$$
 (14)

जंहा r_p मान का (7) से लिया गया है।

4. परिणाम और चर्चा

अवलोकन- जीवाण्विक मस्तिष्कावरण शोध के दौरान हेमाटोक्रिट v / s रक्तचाप को कम करता है।

रोगी- श्री सुरेश पटेल (उम्र 35 वर्ष)

निदान: जीवाण्विक मस्तिष्कावरण शोध (मस्तिष्क रोग)

तालिका1. निदानशाला आंकड़े: जीवाण्विक मस्तिष्कावरण शोध के दौरान रक्त दाब अवनयन और हीमोग्लोबिन

S. No.	Date DDMMYY	Hemoglobin(HB) gm/dl	Hematocrit(3×HB) kg/m³	Blood pressure mm Hg	BPD
1.	200119	10.3	30.9	85/70	-16.38
2.	220119	10.3	30.9	100/80	-18.88
3.	240119	09.6	28.8	120/80	-20.00
4.	250119	08.1	24.3	130/70	-18.88
5.	290119	10.4	31.2	110/70	-17.77
6.	030219	10.8	32.4	120/80	-20.00
7.	070219	11.2	33.6	110/70	-17.77

(निदान शाला आंकड़ों का स्रोत: संजय गांधी चिकित्सा और अस्पताल रीवा (म.प्र.))

शिराओं में दो प्रावस्था रक्त प्रवाह का अभिवाह है-

$$\begin{split} Q &= \int_{o}^{r_{p}} 2\pi r v_{p} dr + \int_{r_{p}}^{R} 2\pi r v dr \\ &= \int_{0}^{r_{p}} 2\pi r \frac{n}{n+1} \Big(\frac{P}{2\eta_{m}}\Big)^{\frac{1}{n}} \left(R - r_{p}\right)^{\frac{1}{n}+1} dr + \int_{r_{p}}^{R} 2\pi r \frac{n}{n+1} \Big(\frac{P}{2\eta_{m}}\Big)^{\frac{1}{n}} \left[\left(R - r_{p}\right)^{\frac{1}{n}+1} - \left(r - r_{p}\right)^{\frac{1}{n}+1}\right] dr \end{split}$$

(13) और (14) समीकरणों का उपयोग करते हुए, हम प्राप्त करते हैं

$$\begin{split} Q &= \frac{2\pi n}{(n+1)} \left(\frac{P}{2\eta_m}\right)^{\frac{1}{n}} (R - r_p)^{\frac{1}{n}+1} \left[\frac{r^2}{2}\right]_0^{r_p} \\ &+ \frac{2\pi n}{(n+1)} \left(\frac{p}{2\eta_m}\right)^{\frac{1}{n}} \left[\frac{r^2}{2} (R - r_p)^{\frac{1}{n}+1} - \frac{r(r - r_p)^{\frac{1}{n}}}{\frac{1}{n}+2} + \frac{(r - r_p)^{\frac{1}{n}+3}}{\left(\frac{1}{n}+2\right) \left(\frac{1}{n}+3\right)}\right]_{r_p}^{R} \\ Q &= \frac{2\pi n}{(n+1)} \left(\frac{P}{2\eta_m}\right)^{\frac{1}{n}} r_p^2 (R - r_p)^{\frac{1}{n}+1} + R^2 (R - r_p)^{\frac{1}{n}+1} - \frac{2R(R - r_p)^{\frac{1}{n}+2}}{\left(\frac{1}{n}+2\right)} + \frac{2R(R - r_p)^{\frac{1}{n}+3}}{\left(\frac{1}{n}+2\right) \left(\frac{1}{n}+3\right)} \\ &- r_p^2 (R - r_p)^{\frac{1}{n}+1} \\ Q &= \frac{\pi n}{(n+1)} \left(\frac{P}{2\eta_m}\right)^{\frac{1}{n}} R^{\frac{1}{n}+3} & \left[\frac{r_p^2}{r^2} \left(1 - \frac{r_p^2}{R}\right)^{\frac{1}{n}+1} + \left(1 + \frac{r_p}{R}\right) \left(1 - \frac{r_p}{R}\right)^{\frac{1}{n}+2} - \frac{2\left(1 - \frac{r_p}{R}\right)^{\frac{1}{n}+2}}{\left(\frac{1}{n}+2\right) \left(\frac{1}{n}+3\right)} \right] \end{split}$$

जहाँ P= दाब प्रवयता , v= मिश्रण की श्यानता (रक्त), n= प्राचल है

अब हमारे पास है $Q=720ml/min, Q=0.011833 \text{m}^3/\text{s}$ and $R=1, r_p=\frac{1}{3}$

लोहित कोशिकामापी (हिमैटोक्रिट) (Ht) = 31.2

$$\eta_m = 0.0039 \, Pa. \, s^{[3,4]}$$
 $\eta_p = 0.00149 \, Pa. \, s^{[4]}$

हम जानते हैं कि

$$\eta_m = \eta_c X + \eta_p (1 - X), \ \overline{\text{sign}} = \text{Ht/100}$$

$$\Rightarrow \eta_c = \frac{\eta_p (1 - X) - \eta_m}{X}$$

$$\eta_c = \frac{0.00149(1 - 0.354) - 0.0039}{(0.354)} \Rightarrow \eta_c = 0.009214359 Pa.s$$

प्नः लोहित कोशिकामापी (हेमाटोक्रिट) में संबंध और परिवर्तन का उपयोग करने पर

$$\eta_m = \eta_c X + \eta_p (1 - X)$$

$$\eta_m = X(\eta_c - \eta_p) + \eta_p \implies \eta_m = 0.000077214Ht + 0.00149$$
(17)

प्रमस्तिष्कीय शिराओं की लंबाई $\Delta Z = 0.0000050 m^{[6]}$

प्रमस्तिष्कीय शिराओं की त्रिज्या R = 0.0000090

रक्तचाप हास
$$\Delta P = \frac{\left(\frac{S+D}{3}+D\right)}{3} - \left(\frac{S+D}{2}\right) = 2365.75 \, Pa. \, s$$

अब समीकरण (15) में r_p और R के मानों का प्रतिस्थापन करने पर -

$$Q = \frac{\pi n}{(n+1)} \Big(\frac{P}{2\eta_m}\Big)^{\frac{1}{n}} R^{\frac{1}{n}+3} \left[\frac{r_p{}^2}{R^2} \Big(1 - \frac{r_p{}^2}{R}\Big)^{\frac{1}{n}+1} + \left(1 + \frac{r_p}{R}\right) \Big(1 - \frac{r_p}{R}\Big)^{\frac{1}{n}+2} - \frac{2 \Big(1 - \frac{r_p}{R}\Big)^{\frac{1}{n}+2}}{\Big(\frac{1}{n}+2\Big)} \right. \\ \left. + \frac{2 \Big(1 - \frac{r_p}{R}\Big)^{\frac{1}{n}+3}}{\Big(\frac{1}{n}+2\Big)\Big(\frac{1}{n}+3\Big)} \right] + \frac{2 \Big(1 - \frac{r_p}{R}\Big)^{\frac{1}{n}+3}}{R^2} \left[\frac{r_p{}^2}{R^2} \Big(1 - \frac{r_p{}^2}{R}\Big)^{\frac{1}{n}+3} + \frac{1}{2} \Big(1 - \frac{r_p{}^2}{R}\Big)^{\frac{$$

अब हमें समीकरण मिलते हैं-

$$Q = \pi \left(\frac{2P}{6\eta_m}\right)^{\frac{1}{n}} \left(\frac{2}{27}\right) \left[\frac{26n^3 + 33n^2 + 9n}{6n^3 + 11n^2 + 6n + 1}\right] \qquad \text{Or,} \quad \frac{27 \times Q}{2\pi} = \left(\frac{P}{3\eta_m}\right)^{\frac{1}{n}} \left[\frac{26n^3 + 33n^2 + 9n}{6n^3 + 11n^2 + 6n + 1}\right]$$

माना

$$\begin{split} A &= \left[\frac{26n^3 + 33n^2 + 9n}{6n^3 + 11n^2 + 6n + 1}\right] \quad \Rightarrow \frac{P}{3\eta_m} = \left(\frac{27 \times Q}{2\pi\,A}\right)^n \quad \Rightarrow P = \left(\frac{27 \times Q}{2\pi\,A}\right)^n \;. \; 3\eta_m \\ P &= -\frac{dp}{dz} \\ -dp &= Pdz \end{split}$$

और Zf से Zi तक दबाव सीमा लेने पर -

$$\int_{P_f}^{P_i} dP = -\int_{Z_f}^{Z_i} \! \left(\! \frac{27 \times Q}{2\pi\,A} \!\right)^n$$
 . $3\eta_m dz$

जहां $P_f - P_i =$ दाब ह्रास और $Z_f - Z_i =$ प्रमस्तिष्कीय शिराओं की लंबाई है।

$$P_f - P_i = \left(\frac{27 \times Q}{2\pi A}\right)^n . 3\eta_m . \left(Z_f - Z_i\right) \tag{18}$$

समीकरण (15) को हल करने के बाद हमें ज्ञात होता है-

$$\frac{27 \times Q}{2\pi A} = \left(\frac{P_f - P_i}{(Z_f - Z_i) \, 3\eta_m}\right)^{1/n}$$

$$\frac{27 \times Q}{2\pi} = \left[\frac{26n^3 + 33n^2 + 9n}{6n^3 + 11n^2 + 6n + 1}\right] \left(\frac{P_f - P_i}{(Z_f - Z_i) \, 3\eta_m}\right)^{1/n} \tag{19}$$

 $Q,\eta_m,(P_f-P_i)$ और (Z_f-Z_i) उपर्युक्त मानों को प्रतिस्थापित करने पर और

संख्यात्मक विधि (परीक्षण और त्रुटि विधि) द्वारा हल से प्राप्त होता है ।

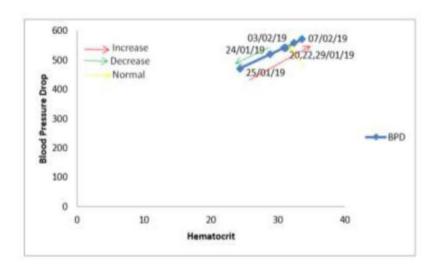
$$\frac{27\times0.011833}{6.28} = \left[\frac{26n^3 + 33n^2 + 9n}{6n^3 + 11n^2 + 6n + 1}\right] \left(\frac{2365.75564}{0.0000050\times0.0117}\right)^{1/n}$$

$$0.050828 = \left[\frac{26n^3 + 33n^2 + 9n}{6n^3 + 11n^2 + 6n + 1}\right] (9.22E + 09)^{1/n}$$

$$n = -3.97493$$
(20)

अब इस मान को समीकरण (18) में रखने पर है हमें ΔP प्राप्त हो जाता है

$$P_f - P_i = \left(\frac{27 \times Q}{2\pi A}\right)^n . 3\eta_m . (Z_f - Z_i)$$


$$\Delta P = (27979530) \times (0.0000050) \times 3\eta_m$$

$$\Delta P = 139.89765 (0.000077214 Ht + 0.00149)$$

$$\Delta P = 0.010801498 Ht + 0.208447498$$
(21)

तालिका 2: हेमेटोक्रिट (Ht) v / s रक्त दाब अवनयन (BPD)

Date	200119	220119	240119	250119	290119	030219	070219
$Ht (kg/m^3)$	30.9	30.9	28.8	24.3	31.2	32.4	33.6
BPD (Pa.s)	542.21	542.21	519.53	470.92	542.45	558.41	571.37

आरेख1: जीवाण्विक मस्तिष्कावरण शोध के मामले में प्रमस्तिष्कीय शिरिकाओं के क्लिनिक आंकड़ों का लेखाचित्रीय प्रस्तुतीकरण

5. निष्कर्ष

आरेख 1 (तालिका 1, 2) 24/01/19 से 25/01/19 तक 22/01/19, 23/01/19, और 29/01/19 से पता चलता है कि रक्तचाप में गिरावट सीधे घटती है। इस अध्ययन के अनुसार हमने निष्कर्ष निकाला है कि रक्तचाप की गिरावट की इच्छा शक्ति के लिए लोहित कोशिकमापी (हेमाटोक्रिट) के कार्य को नामित करें। जब ग्राफ बढ़ती हुई अवस्था को दिखाता है तो हम गंभीर खुराक के लिए सुझाव नहीं दे सकते हैं और जब ग्राफ घटता है, तो हम गंभीर खुराक के लिए सुझाव वहीं दे सकते हैं और जब ग्राफ घटता है, तो हम गंभीर खुराक के लिए सुझाव देते हैं, लेकिन अलग-अलग परिस्थितियों (महत्वपूर्ण, मध्य और सामान्य) पर ढलानों की प्रवृत्ति के अनुसार हमने सफल संचालन के लिए सुझाव दिया है लेकिन इस शर्त के अधीन कि नैदानिक आंकड़े को घोषित ऑपरेशन की अविध में एकत्र किया गया है।

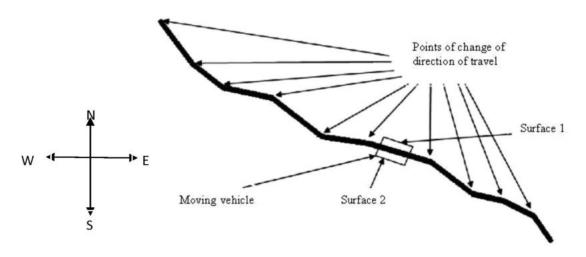
सन्दर्भ

- Asamoah Joshun Kiddy K. Mathematical modeling of bacterial meningitis transmission dynamics with control measures. Hindawi computational mathematical methods in medicine. 2018; 2657461: 1-3.
- 2. BCampus. Anatomy and physiology. Circulation and the central nervous system. 2019; 13: 1-6.
- Elert Glenn. Viscosity, the physics hypertext book. 1998-2019: 1-4
- Gustafson, Daniel R. Physics, health and the human body. Wadsworth. 2010
- Guyton, Arthur C, Hall John E. Textbook of medical physiology-11th edition. ELSEVIER SAUNDERS. 2006; 14: 161-170.
- Hartmann David A. et al. Dose pathology of small venules contribute to cerebral maicroinfracts and dementia. J. of Neurochemistry. 2018; 144: 517-526.
- 7. Kapur JN. Mathematical model in biology and medicine. EWP, new delhi. 1992: 342-357.
- Marin Miguel, Padilla. The human brain intracerebral microvascular system: development and structure. J. of Fortiers in Neuroanatomy. Vol.6 2012; 38: 1-14
- Meningitis. Research publication. NJ Health. 2019: 1-3.
- Sato Kohei et al. Relation between cerebral arterial inflow and venous outflow during dynamic supine exercise. Physiological reports. Vol.5 2017; 12: 1-8.
- Srivastav Rupesh K. Two –layered model of blood flow through arterial catheterization with non-symmetric constriction. J of computation in biosciences and engineering Vol.2 2015; 02: 1-3.
- Upadhyay V. thesis. Some phenomena in two phase blood flow. Department of mathematics & statistics, university of Allahabad (U.P.). 2001; 54-58.
- Upadhyay V., Pandey PN. A power low model of two phase blood flow in arteries remote from the heart. Int. academy of physical sciences. 1999.
- 14. WHO. A mathematical model for meningitis disease. Red sea university J of basic and applied science vol2. 2017; 02: 467-469.

चलती सतहों पर सौर विकिरण की गणना के लिए व्यापक गणितीय मॉडल का विकास

अन्तरिक्ष गुप्ता

रिसर्च एंड डेव्लपमेंट सेन्टर फॉर आइरन एंड स्टील, सेल, राँची आकृति निगम


बिरला इंस्टीट्यूट ऑफ टैकनोलजी मेसरा, राँची

सार: यह अध्ययन गति की निरंतर बदलती दिशा के साथ-साथ चलती सतहों पर आने वाले सौर विकिरण की गणना के लिए एक विधि का प्रस्ताव करता है। एक विशिष्ट मामले के लिए मौजूदा सौर विकिरण डेटा के आधार पर प्रस्तावित सामान्य विधि का सत्यापन प्रस्तुत किया गया है। तीन अलग-अलग सतह अभिविन्यास के लिए विकिरण गणना मॉडल विकसित किया गया है। कुंजी शब्द : सौर विकिरण; वातानुकूलन; चलती सतह; गणितीय मॉडलिंग

प्रस्तावना

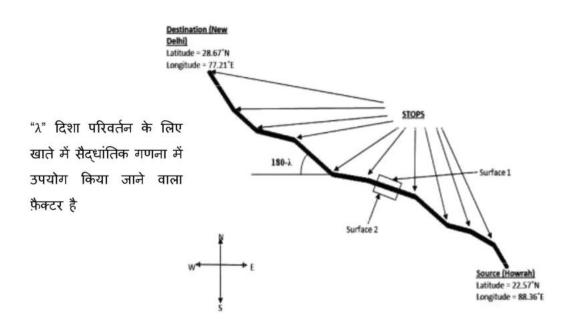
विभिन्न परिवहन साधनों जैसे वाहनों, बसों, कारों आदि में वातानुकूल का उपयोग बहुत तीव्रता से बढ़ रहा है। कुशल वातानुकूलन सिस्टम प्रदान करने के लिए, लोड के बारे में सिस्टम के लिए बहुत स्पष्ट जानकारी होना आवश्यक है ।एक वातानुकूलन प्रणाली, यात्रा के किसी भी साधन में प्रयोग किया जाने वाला दूसरा सबसे बड़ा ऊर्जा उपभोक्ता घटक है। प्रायः वातानुकूलन प्रणाली त्वरित प्रतिक्रिया सुनिश्चित करने के लिए अभिकल्पित किए जाते हैं तािक केिबन का तापमान जल्दी से गिर जाए और तंत्र की उच्च आर्द्रता और उच्च वायुमंडलीय तापमान की अनियमित और दुर्लभ स्थितियों पर काबू पाया जा सके। इस प्रकार कम शीतलन लोड की सामान्य परिस्थितियों में, बहुत सारी ऊर्जा अनावश्यक रूप से नष्ट हो जाती है [2] और इसके परिणामस्वरूप ईंधन की अधिक खपत होती है [3]। अनुभव से यह पता चला है कि वातानुकूल प्रणाली का प्रदर्शन दैनिक शीतलन लोड से प्रभावित होता है जोिक बाहर और आंतरिक की स्थितियों पर निर्भर करती है। सौर भर का परिवर्तन , परिवर्तनशील शीतलन भार के प्रमुख कारकों में से एक है। इस प्रकार सौर लोड के एक संवृत अनुवीक्षण कारक के कारण वातानुकूल प्रणाली क्षमता के अधिक अनुमान को नियंत्रित करने में मदद करता है और प्रणाली की दक्षता में सुधार और ईंधन की खपत को कम करने में

मदद करती है। सौर लोड, वाहन की सतह के सूर्यानुसार उन्मुखीकरण, दिन के समय, यात्रा की दिशा तथा दूसरे कई अनियंत्रित कारकों जैसे कि आकाश की स्थिति आदि के कारण परिवर्तित हो सकता है। चित्र 1 बताता है कि चलते वाहन की सतहों पर सौर लोड कैसे भिन्न हो सकता है।

चित्र 1: एक निर्दिष्ट मार्ग पर चलते हुए वाहन

चित्र 1 से यह समझा जा सकता है कि किसी पथ पर सतह की गति के कारण सतह पर गिरने वाले सौर विकिरण कैसे परिवर्तित हो सकते हैं। सूर्य के संबंध में सतह के उन्मुखीकरण के कारण सौर लोड बदल जाएगा, जो बदले में इस पर निर्भर करता है:

- 1. दिशा किस सतह के साथ यात्रा कर रही है
- 2. दिन का समय (एक विशिष्ट अक्षांश और देशांतर के संबंध में) सूर्य की स्थिति का निर्णय करता है।


चलती गाड़ी की बाहरी सतह पर यह बदलता हुआ सौर लोड केबिन के अंदर चला जाता है और एसी सिस्टम द्वारा इसका ध्यान रखा जाता है। व्यवहारिक रूप से एसी प्रणाली को आंशिक लोड स्थितियों के दौरान यात्री केबिन को ठंडा करने के लिए ऊर्जा की खपत पर ध्यान दिए बिना अधिकतम क्षमता पर अधिकतम क्षमता से काम करने के लिए डिज़ाइन किया गया है या कभी-कभी मैन्युअल ध्यान शीतलन क्षमता को समायोजित करने के लिए होता है, लेकिन यह आंशिक लोड पर सिस्टम को चलाने का कारण बनता है।

इस प्रकार सभी परिवर्तनीय लोड स्थितियों में ऊर्जा की बचत और यात्रियों के तापीय आराम के लिए कुशल संचालन सुनिश्चित करने के लिए एक वातानुकूल प्रणाली विकसित करने की आवश्यकता है। गणितीय मॉडल अलग-अलग सौर विकिरण की प्रवृत्ति को पकड़ता है और इसलिए सौर लोड

भिन्नता पैटर्न की भविष्यवाणी करने में सहायक होता है जो चलते वाहनों के लिए वातानुकूल प्रणाली के डिजाइन के लिए एक इनपुट हो सकता है।

12. 百段

किसी वाहन की यात्रा का मार्ग निर्दिष्ट स्रोत और गंतव्य के साथ माना जाता है, जैसा कि चित्र 2 में दिखाया गया है। वाहन मार्ग को दो स्टॉप के बीच की सीधी रेखाओं से बना माना जाता है, मात्रा के प्रत्येक सेट के लिए स्टॉप कोण (त्र) अचर माना जाता है।

चित्र 2: कल्पित वाहन मार्ग

सौर विकिरण के कारण लोड विभिन्न प्राचलों के कारण समय के साथ बदलता रहेगा, जिसकी चर्चा निम्न प्रकार से की जाती है।

- पृथ्वी का घूर्णन लगातार सूर्य के सापेक्ष अपनी स्थिति बदलता रहता है और इस प्रकार सौर विकिरण प्राप्त करने का उन्मुखीकरण बदलता रहता है
- वाहन की गति, उसके अक्षांश और देशांतर को बदलती है, जिसका प्रभाव आने वाले सौर विकिरण पर भी पड़ता है।

गति का मार्ग भी अपनी दिशा बदलता है इस प्रकार सतहों पर घटनाओं का कोण, प्राप्त विकिरण की मात्रा में बदलाव के लिए अग्रणी बदलता रहता है। किसी भी सतह पर प्रत्यक्ष विकिरण (ID) की गणना के लिए समीकरण है। [4]

$$I_{D} = I_{DN} \times \cos \theta \tag{1}$$

$$I_{DN} = A \times e^{\frac{-B}{\sin \beta}} \tag{2}$$

A और B स्थिरांक हैं जिनके मान दिए गए हैं:

दिसंबर और जनवरी के महीने के लिए; A = 1230 W/m²

मध्य गर्मियों के लिए; A = 1080 W/m²

सर्दियों में; B = 0.14

गर्मियों में; B = 0.21

β' , जिसे ऊंचाई कोण के नाम से जाना जाता है , इस तरीके से बताया गया है $β = \sin^{-1}(\cos l \times \cos h \times \cos d + \sin l \times \sin d)$ (3)

'd' झुकाव है जिसकी गणना निम्नलिखित रूप से की गई है [3]

$$d = 23.47 \times \sin \frac{360 \times (284 + N)}{365} \tag{4}$$

जहाँ N पहली जनवरी से गिने जाने वाले वर्ष का दिन है

'L' अक्षांश कोण है जो वाहन की गित के दौरान प्रमुख विचार है क्योंकि प्रस्तुत मामले में अक्षांश लगातार बदलता रहता है:

- 1. वाहन की आवाजाही, और
- वाहन की गित के दौरान पथ कोण (λ) का पिरवर्तन
 इसिलए जब वाहन स्टॉप के एक विशेष सेट के बीच घूम रहा हो तो अक्षांश की भिन्नता के लिए समीकरण होता है।

$$l = la_s + \frac{(V \times t_e \times \sin \lambda)}{C_l}$$
(5)

C_I = स्थिर, जो '111' के बराबर है क्योंकि स्थान में 111 किलोमीटर के परिवर्तन के लिए अक्षांश 1° से बदल जाता है।

 t_a = वाहन के स्टॉप के लिए स्टार्टिंग स्टॉप को छोड़ने के बाद बीता हुआ समय (घंटा) V = a वाहन का वेग (किमी प्रति घंटा)

'h' घंटे का कोण है, यह सौर दोपहर के संबंध में दिन के समय का माप है।

घंटे का कोण भी वाहन की गति के साथ बदलता रहता है क्योंकि बिंदु की स्थिति लगातार बदल रही है और उस बिंदु पर घंटे के कोण की गणना करने के लिए नए बिंदु की प्रत्येक त्वरित स्थिति का उपयोग किया जाता है। घंटे के कोण (h) के लिए प्रयुक्त अभिव्यक्ति है,

$$h = LST \times 15 \tag{6}$$

जहां, LST = स्थानीय सौर समय, इस रूप में दिया गया

$$LST = t + \frac{EOT + 4 \times [lon - 82.5]}{60} \tag{7}$$

समय का समीकरण निम्नलिखित व्यंजक द्वारा दिया गया है [4]

$$EOT = 0.2292$$

$$\times [0.075 + 1.868 \times \cos N_f - 32.077 \\ \times \sin N_f - 4.615 \\ \times \cos(2 \times N_f) - 40.89 \times \sin 2 \times N_f]$$
(8)

जहां,

$$N_f = (N - 1) \times \frac{360}{365} \tag{9}$$

वाहन की गति के साथ स्थान का देशांतर (longitude) भी भिन्न होता है और इसे निम्नवत दिया जाता है:

$$lon = lon_s + \frac{(V \times t_e \times \cos \lambda)}{C_{lon}}$$
(10)

यहाँ पर,

lons = स्टॉप के तय सेट के लिए प्रारंम्भिक स्टॉप का देशांतर

Clon = स्थिर, जो भूमध्य रेखा के 45° N या S के अंदर '111' है

और क्रमशः भूमध्य रेखा के 45 or N या S के ऊपर और नीचे '78.83' है इसलिए प्रस्तावित गणितीय मॉडल में वाहन की गति का ध्यान रखते हुए निम्नलिखित बातों का ध्यान रखा गया है:

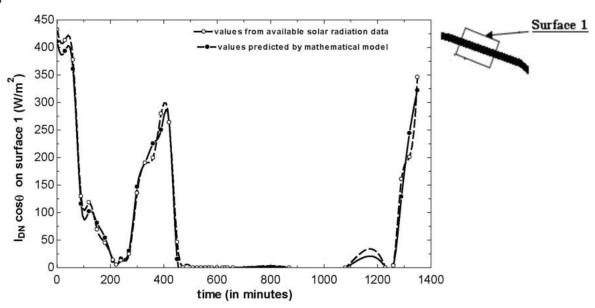
- 1. वाहन का अभिविन्यास बदलना ('ते' कारक का उपयोग करके ध्यान रखा गया) |
- 2. वाहन का अक्षांश और देशांतर बदलना |

इस मॉडल का उपयोग चलते वाहन की विभिन्न सतहों पर सौर विकिरण की गणना करने के लिए किया जा सकता है।

चित्र 2 से उन सतहों को देखा जा सकता है जिन पर सौर विकिरण की गणना की जा सकती है:

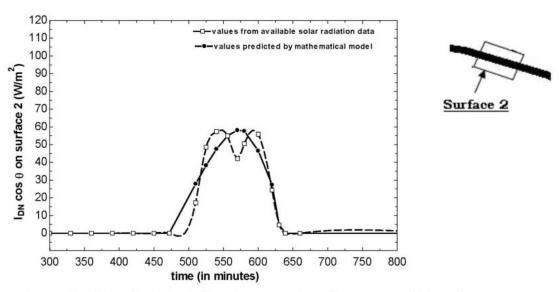
- 1. सतह 1 (उत्तरमुखी)
- 2. सतह 2 (दक्षिणमुखी)
- 3. शीर्ष सतह (क्षैतिज और आकाशोन्नम्खी)

3. पुष्टिकरण प्रक्रिया

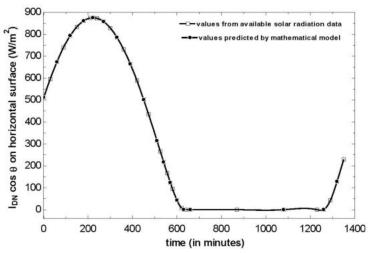

वाहन मार्ग में पड़ने वाले स्थानों के लिए विभिन्न स्थानों पर सौर विकिरण डेटा उपलब्ध है [5,6]। सत्यापन उद्देश्य प्रक्रिया के लिए निम्नान्सार है:

- स्रोत से वाहन का प्रारंभ समय स्बह 8:00 बजे माना जाता है।
- 2. वाहन का वेग 70 किमी प्रति घंटे के रूप में लिया जाता है
- प्रस्तावित गणितीय मॉडल का उपयोग करके विभिन्न उदाहरणों में इन मान्यताओं के आधार पर सौर विकिरण तीनों सतहों (जैसा कि ऊपर उल्लेख किया गया है) पर गिना गया है।
- 4. विभिन्न स्थानों और अलग-अलग समय पर उपलब्ध सौर विकिरण डेटा का उपयोग करके एक समान स्थिर सतह (एक ही समय में वाहन की चलती सतह के साथ अभिविन्यास में समान) पर पड़ने वाले विकिरण की गणना की जाती है।
- 5. चरण 3 और चरण 4 से प्राप्त विकिरण मूल्यों की तुलना की गई है। जैसा कि चरण 4 से प्राप्त मूल्य मानक विकिरण मान हैं जो अच्छी तरह से स्थापित विधियों का उपयोग करके प्राप्त किए गए हैं, इसलिए चरण 3 के मानों के साथ चरण 3 से सौर विकिरण के मान विकसित गणितीय मॉडल की सटीकता प्रदान करते हैं।

परिणाम और चर्चा


उपरोक्त चरण 5 में वर्णित तुलना की गई है और विभिन्न सतहों के लिए इसके परिणाम निम्नानुसार प्रस्तुत किए गए हैं:

चित्र 3 चरण 1 पर विकिरण की भिन्नता को दर्शाता है, आरंभ में माना गया समय सुबह 8:00 बजे है अर्थात X-Axis पर '0' के रूप में दिखाया गया है, सौर दोपहर में एक उध्विधर सतह पर विकिरण शून्य है, समान स्वरूप यहाँ देखा गया है कि विकिरण मूल्य आरंभ में लगातार घटता है और सौर दोपहर में शून्य मान प्राप्त करता है अर्थात 221 मिनट के समय के आसपास ग्राफ में जैसे ही सौर दोपहर के बाद फिर से बढ़ना शुरू होता है, विभिन्नता अक्षांश, देशांतर और सतह के उन्मुखीकरण में निरंतर परिवर्तन के कारण होती हैं। फिर से एक और शिखर पर पहुंचने के बाद विकिरण मूल्य शून्य तक घट जाता है क्योंकि सूर्यास्त के बाद कोई विकिरण मौजूद नहीं होगा, अगले सूर्योदय के बाद विकिरण फिर से बढ़ जाता है जैसािक अंजीर में दिखाया गया है। सौर विकिरण डेटा और गणितीय मॉडल से दर्ज किए गए मूल्यों में थोड़ा अंतर इस तथ्य के कारण है कि गित के कोण के साथ बदलती सतह के अभिविन्यास की निरंतर भिन्नता बिल्कुल निर्धारित नहीं है।


चित्र 3: सौर विकिरण डेटा और गणितीय मॉडल का उपयोग करके सतह 1 पर विकिरण की त्लना

चित्र 4 सतह 2 पर विकिरण की भिन्नता को दर्शाता है, प्रस्तुत मामले में स्थिति उत्तरी गोलार्ध में मानी गई है और दक्षिण मुखी सतह में उत्तरी गोलार्ध में कम विकिरण प्राप्त होता है और इसी प्रकार के अवलोकन इस चित्र में अभिलिखित हैं। प्राप्त विकिरण की छोटी मात्रा कुछ समय के लिए सूर्य का सामना करने के लिए दक्षिण की ओर सतह को सक्षम करने वाली ट्रेन के कुछ अभिविन्यास के कारण है।

चित्र 4: सौर विकिरण डेटा और गणितीय मॉडल का उपयोग करके सतह 2 पर विकिरण की तुलना

चित्र 5 क्षैतिज (horizontal or top) सतह पर विकिरण की भिन्नता को दर्शाता है, क्षैतिज सतह पर विकिरण को दोपहर तक बढ़ता है और फिर घटता है तथा विकसित मॉडल द्वारा प्राप्त आउटपुट से भी समान अवलोकन किया जा सकता है। यहाँ सौर विकिरण डेटा और गणितीय मॉडल से प्राप्त मान पूर्णतः मेल खाते हैं क्योंकि गति के दृष्टिकोण का, क्षैतिज सतह पर गिरने वाले विकिरण में कोई योगदान नहीं है।

चित्र 5: सौर विकिरण डेटा और गणितीय मॉडल का उपयोग करके प्राप्त क्षैतिज सतह पर विकिरण की तुलना

5. निष्कर्ष

गणितीय मॉडल से प्राप्त सतहों के सभी तीन अभिविन्यास परिणामों में सौर विकिरण के पहले से उपलब्ध मान के साथ निकटता से मेल खाता है। सतह 1 और सतह 2 (vertical surface 1 and

2) के लिए विकसित गणितीय मॉडल से प्राप्त परिणामों से उच्च कोटि की सटीकता है और गणितीय मॉडल से प्राप्त क्षैतिज सतह के परिणाम उपलब्ध मानों से पूर्णतः मेल खाते हैं। इस प्रकार प्रस्तावित गणितीय मॉडल का उपयोग चलती सतहों पर सौर विकिरण गणना के लिए किया जा सकता है।

संदर्भ

- Mansour M.K, Nusa M.N., Hassan M.N.W. and Saqr K.M. (2008). 'Development of Novel control strategy for multiple circuit, roof top air conditioning system in hot humid countries', Energy conversion and management, 49, 1455-1468
- 2. ASHRAE, Handbook of systems and equipment. New York: ASHRAE, Inc.; 2000.
- Barbusse S, Clodic D, Roume'goux JP. Automobile air-conditioning effect in terms of energy and the environment, vol. 60. Elsevier Science; 1998. pp. 3–18.
- 4. ASHRAE handbook: Fundamentals'99, Chapter 32
- 5. Mani, A. (1980). Handbook of Solar Radiation Data for India, Allied Publishers, New Delhi, India.
- Mani, A. and Rangarajan, S. (1982). Solar Radiation over India, Allied Publishers, New Delhi, India.
- Satyamurty, V.V. and SarathBabu, K. (1999). 'Relative Performance of correlations to estimate hourly ambient air temperature and development of general correlation', Int. J. Energy Res., 23, pp. 663-673
- Li, T.T., Bai, Y.H., Liu, Z.R., Liu, J.F., Zhang, G.S. and Li, J.L. (2006). 'Air quality in passenger cars of the ground railway transit system in Beijing, China', Science of the total environment, 367, pp. 89-95

ब्स्ट परिवर्तक में प्रयुक्त विभिन्न सांस्थितियों की समीक्षा

विनोद श्रीवास्तव

अभिषेक कुमार गुप्ता

विद्युतीय अभियांत्रिकी विभाग आई एफ टी एम विश्वविद्यालय, मुरादाबाद विद्युतीय अभियांत्रिकी विभाग आई एफ टी एम विश्वविद्यालय मुरादाबाद

सार: पिछ्ले कुछ वर्षों में कोयला, डीजल, परमाणु आदि जैसे वाणिज्यिक स्रोतों का उपयोग बढ़ा है। आने वाले वर्षों में पारंपरिक स्रोत समाप्त हो सकते हैं। इसलिए, अब अभियंताओं और शोधकर्ताओं की प्रमुख चिंता गैर-पारंपरिक स्रोतों जैसे सौर संयंत्रों, ईंधन कोशिकाओं, बैटरी, पवन ऊर्जा आदि की ओर स्थानांतरित हो गई है, लेकिन इनमें से अधिकांश स्रोतों में निम्न और अस्थिर विभव की समस्या है और ऐसे स्रोत व्यवसायिक उपयोग के लिए अच्छे नहीं हैं। इसलिए, इन गैर-पारंपरिक स्रोतों का उपयोग करने के लिए आपूर्ति को विद्युत वितरण तंत्र से जोड़ना आवश्यक है। फोटोवोल्टिक अनुप्रयोगों में डीसी-डीसी परिवर्तक का व्यापक रूप से उपयोग किया जाता है। कई शोधकर्ताओं ने साहित्य में डीसी-डीसी परिवर्तक सांस्थितिकी में प्रगति प्रस्तुत की। यह तथ्य डीसी-डीसी परिवर्तक के हाल के तकनीकों पर विस्तृत समीक्षा प्रस्तुत करता है।

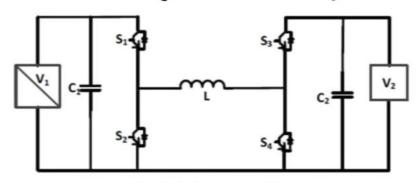
कुंजी शब्दः उच्च वृद्धि डीसी-डीसी उच्च परिवर्तकः; उच्च विभव लाभः; इंटरलेव्ड उच्च परिवर्तकः; चुंबकीय युग्मनः; स्विचड प्रेरित्रः; बह् स्तरीयः; बह्स्तरीयः; स्विचड संधारित्रः; वोल्टेज गुणक सेल

प्रस्तावना

आजकल उद्योगों को डीसी-डीसी परिवर्तक की बहुत आवश्यकता है। परिवर्तनशील दिष्ट धारा स्रोत औद्योगिक अनुप्रयोगों के प्रदर्शन में सुधार करता है। विभिन्न डीसी-डीसी परिवर्तक शक्ति रूपांतरण अनुप्रयोगों के लिए उपलब्ध हैं। ये डीसी-डीसी परिवर्तक गैर-पारंपरिक स्रोतों के साथ-साथ चिकित्सा, भौतिकी, सैन्य आदि में सबसे लोकप्रिय हैं। मूल रूप से उच्च मांग वाले परिवर्तक की आवश्यकता वहाँ होती है जहाँ उच्च दिष्ट धारा वोल्टेज विभव की जरूरत हो। [1] इन आवश्यकताओं के आधार पर यह लेख सामान्य रूप से डीसी-डीसी परिवर्तक में उच्च लाभ प्राप्त करने के लिए विभिन्न तकनीकों को प्रस्तुत करता है।

गैर-पारंपरिक ऊर्जा स्रोत विद्युत शक्ति परिमाण में वृद्धि करते हैं। ठोस ईंधन प्रदूषण पैदा करता है इसलिए बिजली उत्पादन के अगले चरण के लिए शक्ति परिवर्तक सांस्थितिकी बहुत उपयोगी हैं। पीवी पैनल 20-60V के क्रम में आउटपुट विभव देता है। पीवी पैनल और इन्वर्टर-लोड के बीच संयोजन करने के लिए डीसी-डीसी बूस्टर परिवर्तक व्यापक रूप से उपयोग होते हैं। पीवी पैनल में विभव बढ़ाने के लिए उच्च विभव की आवश्यकता होती है। फुल ब्रिज इन्वर्टर में निवेश के लिए लगभग 380 वोल्ट की आवश्यकता होती है।

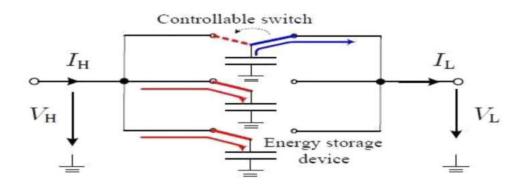
2. विभव बूस्टिंग तकनीक


आजकल कई विभव बूस्टिंग तकनीक उपलब्ध हैं। यह लेख इन विभिन्न प्रकार के विभव बूस्टिंग तकनीकों, उनके फायदों, नुकसान और अनुप्रयोगों को प्रस्तुत करता है।

2.1 बह्आयामी तकनीक

यह तकनीक विविध कनेक्शन में परिवर्तक के विभिन्न चरणों के संयोजन को नियुक्त करती है। इस पद्धित में कैस्केड, इंटरलेट्ड और बहुस्तरीय परिवर्तक तकनीक शामिल हैं। इन तकनीकों का विभव लाभ पद्धित के आधार पर तेजी से या रैखिक रूप से बढ़ता है।

2.1.1 कैस्केड परिवर्तक


द्विदिश शक्ति प्रवाह छमता डीसी -डीसी परिवर्तक की मुख्य ज़रूरत होती है। इस विशेषता की वजह से पुनर्योजी ऊर्जा को अवशोषित और संक्षिप्प्त किया जा सकता है। कास्केडेड बक बूस्ट परिवर्तक में एक प्रेरित्र उपयोग किया जाता है। इस सांस्थितिकी को चित्र-1 में दर्शाया गया है। इस तकनीक में निवेश और निर्गम अवस्थाओं के मध्य में एक मध्यस्थ प्रेरित्र उपयोग किया जाता है। कास्केडेड परिवर्तक को इस लेख में मुख्यत: तीन भाग में वर्गीकृत किया गया है।

चित्र 1: कैस्केड बक बूस्ट प्रेरित

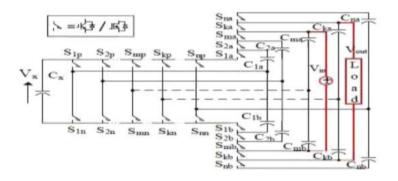
- i. परिवर्तक में कुछ प्रकार के स्रोत जैसे बैटरी, ईंधन सेल और उत्कृष्ट संधारित्र [2]।
- ii. परिवर्तक में विभिन्न प्रकार के स्रोत, जैसे बैटरी के साथ अकेले फोटोवोल्टिक तंत्र, या सौर पवन संकर ऊर्जा प्रणाली।
- iii. एक ही प्रकार के स्रोतों में विभिन्न प्रकार की प्रचालन स्थिति।

चित्र-2 संकर कैस्केड डीसी-डीसी परिवर्तक के योजनाबद्ध आरेख को दर्शाता है जिसमें प्रत्येक चरण एक नियंत्रण स्विच द्वारा नियंत्रित किया जाता है और स्विच और ऊर्जा भंडारण उपकरण द्वारा निर्मित होता है। ऊर्जा भंडारण उपकरण स्विच की मदद से ऊर्जा की कुछ मात्रा को एक डीसी साइड से दूसरे डीसी भाग में संग्रहित कर सकते हैं। पाली चरण व्यवस्था, एकल चरण स्विचिंग व्यवस्था का संशोधन है और एकल चरण स्विचिंग कार्रवाई [3] में ऊर्जा प्रवाह रुकावट की समस्या को दूर करती है।

चित्र 2: एच सी डी सी

2.1.2 इंटरलीवड परिवर्तक

इंटरलीविंग, जिसे बहुचरणीय भी कहा जाता है, एक तकनीक है जो फ़िल्टर घटकों के आकार को कम करने के लिए उपयोगी है। यह एक सामान्य फिल्टर संधारित और लोड से जुड़े स्विच, डायोड, और संकेतकों के दो समूह के समानांतर संयोजन के बराबर है। [4], में युग्मित प्रेरक की सहायता से एक द्विदिश बक - बूस्ट परिवर्तक प्रस्तुत किया है।


2.1.3 बहस्तरीय परिवर्तक

जैसा कि एचवीडीसी प्रणाली बहुत लोकप्रिय है, वोल्टेज विभव स्रोत परिवर्तक आधारित उच्च विभव प्रत्यक्ष वर्तमान प्रणाली भी महत्व प्राप्त कर रही है। थाइरिस्टर आधारित एचवीडीसी प्रणाली की तुलना में विभव स्रोत परिवर्तक आधारित एचवीडीसी के अधिक फायदे हैं। इसमें सक्रिय और

प्रतिक्रियाशील शक्ति नियंत्रण, उच्च उत्पादित विभव और बिना लहर के धारा होती है। इस प्रकार के परिवर्तक के कुछ नुकसान भी हैं जैसे कि स्विचिंग हानियाँ और डीसी भाग अवगमन में कम दोष सिहष्णु क्षमता [5]। इन समस्याओं को दूर करने के लिए कुछ बहुस्तरीय परिवर्तक पेश किए गए हैं [6]। इन परिवर्तकों में से एकाई बहुस्तरीय परिवर्तक तुलना में अधिक महत्व प्राप्त कर रहा है जिसका कारण इसकी कम DV/dt, कम हार्मीनिक्स, मापनीयता और प्रतिरूपकता है। इसमें स्विचिंग के नुकसान भी कम हैं।

2.2 स्विचड संधारित्र (चार्ज पंप)

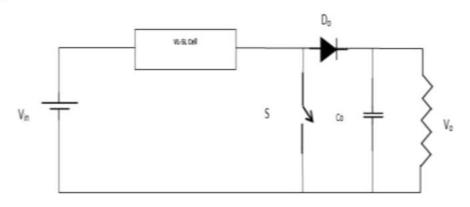
सौर और ईंधन सेल जैसे गैर-पारंपिरक स्रोत संचालन के लिए कम विभव सीमा पसंद करते हैं लेकिन ग्रिड बाइंड सिस्टम को उच्च विभव सीमा की आवश्यकता होती है। ये उच्च विभव सीमा दक्षता को प्रभावित करती हैं। कम दक्षता की समस्या को दूर करने के लिए [7] में उच्च दक्षता डीसी-डीसी परिवर्तक के साथ एक उच्च विभव लाभ का प्रस्ताव दिया है, जो युग्मित प्रेरित्र, मध्यवर्ती संधारित्र और रिसाव ऊर्जा वसूली तकनीक पर आधारित है। हानि को कम करने के लिए परिवर्तक की इनपुट ऊर्जा को युग्मित प्रेरित्र और मध्यवर्ती संधारित्र में दोष-रहित तरीके से संग्रहित किया जाता है। एक असंगत डिक्सन परिवर्तक, (n / m) x के नाम से परिवर्तक के रूप में प्रस्तावित है [8]। यह समाकृति उच्च दक्षता के साथ आवश्यक विभव लाभ दे सकता है। स्विच किए गए संधारित्र पर आधारित परिपथ के आधार पर परिवर्तक के कई अन्य फायदे और सीमाएं [9] की चर्चा की गई हैं। डिक्सन आधारित परिवर्तक इन स्विच्ड संधारित आधारित परिवर्तक [10] की तुलना में सर्वश्रेष्ठ प्रदर्शन देता है। (n / m) X परिवर्तक (k / m) X की एक सामान्य संरचना से लिया गया है, जिसे चित्र-3 में दिखाया गया है। इस कनवर्टर में n शस्त्र और n पाद हैं जो कुल 2n अंग बन जाते हैं। प्रत्येक शस्त्र में दो संधारित की एक श्रृंखला संयोजित होती है।

चित्र 3: जेनेरिक (k/m) X परिवर्तक

2.3 विभव गुणक तकनीक

उच्च दक्षता , बेहतर विश्वसनीयता और सबसे अधिक आर्थिक रूप की वजह से 400 वी डीसी आपूर्ति प्रणाली ए सी आपूर्ति प्रणाली [11] की तुलना में सबसे अधिक लोकप्रियता हासिल कर रही है । दूरसंचार, डेटा संचार, वाणिज्यिक और आवासीय, डीसी वितरण प्रणाली का सबसे अच्छा उदाहरण है [12]। डीसी आपूर्ति प्रणाली या डीसी वितरण प्रणाली में, सबसे चुनौतीपूर्ण कार्य 400 वी सिस्टम के लिए डीसी-डीसी परिवर्तक है।

पीवी पैनल की सीमा 20 वी से 40 वी डीसी के बीच है। इन वोल्टेजों को बढ़ाने के लिए उच्च कार्य औसत की आवश्यकता होती है, जिसके परिणामस्वरूप पुर्जों पर उच्च विभव तनाव, विभव तरंग और कम दक्षता प्राप्त होती है।


इन कमियों को दूर करने के लिए [13] - [16] डीसी-डीसी बूस्टर परिवर्तक के लिए विभव गुणक कोशिकाओं से बनी हुई टोपोलॉजी प्रस्तावित की गई है। इस तकनीक के आधार पर तालिका 1 में स्विच पर घटकों की संख्या, विभव लाभ और विभव तनाव के संबंध में विभिन्न परिवर्तक की तुलना दिखाई गई है।

तालिका 1: विभिन्न परिवर्तक की स्विच पर घटकों की संख्या, विभव लाभ और विभव तनाव के संबंध में तुलना

तकनीक	[13]	[14]	[15]	[16]
घटकों की संख्या	1	1	2	2
प्रेरकों की संख्या	1	1	2	2
संधारित्र की संख्या	4	3	3	3
डायोड की संख्या	4	3	3	4
आउटपुट विभव / इनपुट विभव	$\frac{3-D}{1-D}$	$\frac{2}{1-D}$	$\frac{3+D}{1-D}$	$\frac{1}{D(1-D)}$
स्विच का विभव / आउटपुट विभव	$\frac{1}{3-D}$	$\frac{1}{2}$	$\frac{1}{3+D}$	(1-D)D
निविष्ट धारा	विच्छिन्न	निरंतर	विच्छिन्न	निरंतर

2.4 स्विचंड प्रेरक और विभव उन्नमन तकनीक

डीसी-डीसी बूस्ट परिवर्तक में निर्गम विभव बढ़ाने के लिए, विभव उन्नमन बेहतर विधि या तकनीक में से एक है। इस तकनीक में स्रोत विभव द्वारा एक संधारित्र को एक निश्चित मूल्य पर चार्ज किया जाता है। उसके बाद निर्गम संधारित्र के विभव के साथ निर्गम विभव को बढ़ाया जाता है। अधिक संधारित्र जोड़ने पर विभव स्तर अधिक बढ़ाया जा सकता है। जब दो संधारित्र का उपयोग किया जाता है, तो इसे पुनः- उन्नमन कहा जाता है, तीन संधारित्र पर यह तिहरा उन्नमन बन जाता है और इसी तरह चौगुनी-लिफ्ट तकनीक, जीटा, कक और सेपिक परिवर्तक का इस्तेमाल विभव उन्नमन तकनीक [17] के साथ किया गया है। चित्र 4 वीएल तकनीक की बुनियादी संरचना को दर्शाता है।

चित्र 4: वोल्टेज लिफ्ट तकनीक

2.5 चुंबकीय युग्मन

चुंबकीय युग्मन सबसे प्रमुख बूस्टिंग तकनीक है। इसका उपयोग गैर-पृथक और पृथक डीसी-डीसी परिवर्तक दोनों के रूप में किया जा सकता है। कुछ ऐसे युग्मित प्रेरक हैं जिनको डीसी-डीसी परिवर्तक को स्विच इ्यूटी चक्र [18] की जटिलता से स्वतंत्रता प्रदान करने के लिए डिज़ाइन किया गया है। रिसाव प्रेरकत्व की वजह से उपकरण पर उच्च विभव शूल होते हैं।

यह बड़े ऊर्जा नुकसान को भी प्रेरित करता है। आरसीडी प्रघाती ऊर्जा अवशोषक विभव भिन्नता या धारा और शिंकंजा विभव ओवरशूट को नियंत्रित कर सकते हैं। आरसीडी प्रघाती ऊर्जा अवशोषक प्रतिरोधक, संधारित्र और डायोड के संयुक्त रूप हैं। इस मामले में रिसाव ऊर्जा अभी भी नष्ट होती है इसलिए इन परिवर्तक को भी प्रस्तावित किया गया है [19]। इस मामले में स्विच की संख्या बढ़ जाती है जिसके परिणामस्वरूप परिपथ में जटिलता होती है। इस परिवर्तक में अन्य की

तुलना में उच्च वोल्टेज लाभ है जो युग्मित प्रेरक प्रौद्योगिकी पर आधारित है। इसी क्रम में [20] में तीन घुमावदार युग्मित प्रेरक का उपयोग करके एकल स्विच के साथ एक परिवर्तक प्रस्तावित किया। इस परिवर्तक में प्रेरक की रिसाव ऊर्जा का पुन: उपयोग किया जा सकता है और डायोड की प्रतिलोम पुनः प्राप्ति समस्या को भी कम किया जा सकता है। यह परिवर्तक उच्च शक्ति घनत्व और दक्षता के साथ उच्च विभव लाभ के लिए डिज़ाइन किया गया है। इसमें एक एकल स्विच और दो वोल्टेज गुणक कोशिकाएँ होती हैं। इसके अलावा इसमें उच्च वोल्टेज रूपांतरण के लिए दो पुनर्योजी प्रघाती ऊर्जा अवशोषक भी है, बिखरा अधिष्ठापन की ऊर्जा को पुन: चिक्रत करता है और वोल्टेज शूल को कम करता है।

3. विभिन्न तकनीकों की तुलना

वोल्टेज बूस्टिंग	लाभ	हानियां	उपयुक्त अनुप्रयोग
तकनीक			
मल्टीस्टेज स्तर	संगत संरचना, उच्च	जटिल नियंत्रण तकनीक,	एचवीडीसी हस्तांतरण, नवीकरणीय
	शक्ति घनत्व, स्थिर,	घटकों की अधिक संख्या और	ऊर्जा प्रणाली,
	कुशल और उच्च	तुलनात्मक रूप से बड़ी और	फोटोवोल्टिक, ईंधन सेल, डीसी ग्रिड,
	वोल्टेज / धारा	भारी	बड़ी बिजली डीसी आपूर्ति, इलेक्ट्रिक
	अनुपात		वाहन, हाइब्रिड इलेक्ट्रिक वाहन और
			ईंधन सेल इलेक्ट्रिक वाहन, और स्पेस
			ऑटोमेशन।
स्विचड संधारित्र	सस्ते, हल्के वजन,	तुलनात्मक रूप से जटिल	ऊर्जा संचय, मोबाइल डिस्प्ले, मोटर
(चार्ज पंप)	छोटे आकार, उच्च	मॉड्यूलेशन, संधारित्र के	वाहन और वाहन अनुप्रयोग और उच्च
	शक्ति घनत्व और	ईएसआर के प्रति संवेदनशील	लाभ डीसी-डीसी अनुप्रयोग।
	तेजी से प्रतिक्रिया।	और आउटपुट वोल्टेज	****
c		विनियमन का अभाव।	
वोल्टेज गुणक	उच्च वोल्टेज क्षमता	घटकों पर उच्च वोल्टेज	एक्स-रे, लेजर, सैन्य, प्लाज्मा
2021	टोपोलॉजी, सेल	तनाव, और उच्च वोल्टेज	अनुसंधान और कण त्वरक।
	आधारित संरचना	अनुप्रयोगों के लिए कई	
		कोशिकाओं की आवश्यकता	
		होती है।	
स्विचड प्रेरक और	कई परिवर्तक में	अधिक निष्क्रिय तत्वों की	मिड-रेंज डीसी-डीसी परिवर्तक और
वोल्टेज लिफ्ट	उच्च बूस्ट क्षमता,	आवश्यकता, और उच्च शक्ति	उच्च लाभ डीसी-डीसी अनुप्रयोगों।
	और बोली लगाने	अनुप्रयोगों के लिए उपयुक्त	years.
	योग्य।	नहीं।	

चुंबकीय युग्मन	उच्च डिजाइन	रिसाव अधिष्ठापन, उच्च	उच्च शक्ति / वोल्टेज डीसी आपूर्ति,
	स्वतंत्रता, ट्यून	वोल्टेज स्पाइक, और	उच्च वोल्टेज अनुप्रयोग (सैन्य,
	करने के लिए बढ़ावा	अपेक्षाकृत भारी के	भौतिकी), डीसी माइक्रो ग्रिड, दूरसंचार
	देने की क्षमता में	नकारात्मक प्रभाव।	और डेटा केंद्र, द्विदिश (एफसी, पीवी,
	बह्मुखी, चुंबकीय		यूपीएस, पी-ईवी, एच-ईवी, वी 2 जी),
	युग्मन का अनुपात,		पुनर्योजी (लिफ्ट, ट्राम /) ट्रॉलीबस),
	कम वोल्टेज पक्ष पर		और एवियोनिक और अंतरिक्षा
	स्विच को चालन के		
	नुकसान को कम		
	करने में मदद और		
	नरम स्विच प्रकार में		
	उच्च दक्षता।		

4. निष्कर्ष

यह लेख डीसी-डीसी परिवर्तक के विभिन्न सांस्थितिकियों के साहित्य की समीक्षा प्रस्तुत करता है जिनकी चर्चा कई अंतरराष्ट्रीय पत्रिकाओं जैसे IEEE, IET और कई अन्य अंतर्राष्ट्रीय पत्रिकाओं में की गई है। इन परिवर्तक का अध्ययन परिवर्तक तकनीकों और उनके अनुप्रयोगों के बारे में बेहतर समझ के लिए किया गया था। यह अध्ययन उच्च विभव लाभ, कम तरंग और उच्च दक्षता के साथ सर्वश्रेष्ठ परिवर्तक सांस्थितिकी के बारे में भी जानकारी देता है। इन परिवर्तक में सोलर पीवी, इलेक्ट्रिक वाहन और कुछ अन्य प्रयोग हैं। इनमें से कई परिवर्तक का हार्डवेयर और वास्तविक समय अनुरूपक के साथ परीक्षण किया गया है। इसके अलावा सौर और इलेक्ट्रिक वाहन आदि जैसे अनुप्रयोगों के साथ इनका परीक्षण किया जाता है।

संदर्भ

- [1] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg and B. Lehman, "A survey on voltage boosting techniques for step-up DC-DC converters," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-8.
- [2] Inthamoussou, F.A.; Pegueroles-Queralt, J.; Bianchi, F.D., "Control of a Supercapacitor Energy Storage System for Microgrid Applications," IEEE Trans. Energy Convers., vol.28, no.3, pp.690-697, Sept. 2013.
- [3] J. Yang, Z. He, H. Pang and G. Tang, "The Hybrid-Cascaded DC–DC Converters Suitable for HVdc Applications," in IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5358-5363, Oct. 2015.
- [4] G. Chen, Y. Deng, L.Chen, Y.Hu, L.Jiang, X. He, and Yousheng Wang, "A Family of Zero-Voltage-Switching Magnetic Coupling Non-isolated Bidirectional DC-DC Converters," IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6223 - 6233, Aug. 2017.

- [5] Shrivastava. V, SL.S and Gupta. AK, "A Literature Review on High Gain dc-dc Boost Converter", International Journal of Research in Advent Technology, Vol.7, No.1, pp. 397-404, January-2019.
- [6] M. Bahrman and B. Johnson, "The ABCs of HVDC transmission technologies," IEEE Power and Energy Magazine, vol. 5, no. 2, pp. 32–44, 2007.
- [7] M. Das and V. Agarwal, "Design and Analysis of a High-Efficiency DC-DC Converter With Soft Switching Capability for Renewable Energy Applications Requiring High Voltage Gain," in IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2936-2944, May 2016.
- [8] Singer, Z.; Emanuel, A.; Erlicki, M.S., "Power regulation by means of a switched capacitor," in Electrical Engineers, Proceedings of the Institution of, vol.119, no.2, pp.149-152, February 1972
- [9] Singer, Z.; Emanuel, A.; Erlicki, M.S., "Power regulation by means of a switched capacitor," in Electrical Engineers, Proceedings of the Institution of, vol.119, no.2, pp.149-152, February 1972
- [10] M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC-DC Converters," Computers in Power Electronics, 2006. COMPEL '06. IEEE Workshops on, Troy, NY, 2006, pp. 216-224.
- [11] V. A. K. Prabhala, B. P. Baddipadiga, and M. Ferdowsi, "DC distribution systems An overview," in Renewable Energy Research and Application (ICRERA), 2014 International Conference on, 2014, pp. 307-312.
- [12] A. Fukui, T. Takeda, K. Hirose, and M. Yamasaki, "HVDC power distribution systems for telecom sites and data centers," in Power Electronics Conference (IPEC), 2010 International, 2010, pp. 874-880.
- [13] W. Bin, L. Shouxiang, L. Yao, and K. M. Smedley, "A New Hybrid Boosting Converter for Renewable Energy Applications," Power Electronics, IEEE Transactions on, vol. 31, pp. 1203-1215, 2016.
- [14] W. Gang, R. Xinbo, and Y. Zhihong, "Nonisolated High Step-Up DC-DC Converters Adopting Switched-Capacitor Cell," Industrial Electronics, IEEE Transactions on, vol. 62, pp. 383-393, 2015.
- [15] T. Yu, W. Ting, and H. Yaohua, "A Switched-Capacitor-Based Active-Network Converter With High Voltage Gain," Power Electronics, IEEE Transactions on, vol. 29, pp. 2959-2968, 2014.
- [16] J. C. Rosas-Caro, F. Mancilla-David, J. C. Mayo-Maldonado, J. M. Gonzalez-Lopez, H. L. Torres-Espinosa, and J. E. Valdez-Resendiz, "A Transformer-less High-Gain Boost Converter With Input Current Ripple Cancelation at a Selectable Duty Cycle," Industrial Electronics, IEEE Transactions on, vol. 60, pp. 4492-4499, 2013
- [17] E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali, and A. A. Fardoun, "A family of single-switch PWM converters with high step-up conversion ratio," IEEE Trans. Cir. and Sys. I: Reg. Papers, vol. 55, pp. 1159-1171, 2008.
- [18] W. H. Li and X. N. He, "Review of non-isolated high step-up DC/DC converters in photovoltaic grid-connected applications," IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239–1250, Apr. 2011.
- [19] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, "Boost converter with coupled inductors and buck-boost type of active clamp," IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154-162, Jan. 2008.
- [20] Mohammad Khalilzadeh, Karim Abbaszadeh, "Non-isolated high step-up DC-DC converter based on coupled inductor with reduced voltage stress," IET Power Electronics. Vol. 8, Iss. 11, pp. 2184–2194, May.2015.

अविश्वासनीय विनिर्माण प्रणातियों की अनुरक्षणीयता और अतिरिक्तता

डॉ. मधु जैन

गणित विभाग भारतीय प्रौद्योगिकी संस्थान रुड़की रुड़की, उत्तराखंड

ई-मेल: madhufma@iitr.ac.in

प्रों. जी. सी. शर्मा

गणित विभाग डॉ. बी. आर. अम्बेडकर विश्वविद्यालय आगरा

ई-मेल: gokulchandra5@gmail.com

सार: विनिर्माण प्रणालियों की मॉडलिंग और प्रतीक्षा पंक्ति विश्लेषण, जो मशीनों के संचालन की अपेक्षित संख्या की अनुपलब्धता के कारण विफलता के अधीन है, ने सैद्धांतिक और अनुप्रयोग दोनों दृष्टिकोणों से कई शोधकर्ताओं का ध्यान आकर्षित किया है। यह लेख अविश्वसनीय निर्माण प्रणालियों के प्रदर्शन मॉडलिंग के क्षेत्र में प्रमुख योगदान और पंक्तिबद्ध सिद्धांत के अनुप्रयोगों का अवलोकन प्रस्तुत करता है। हम विनिर्माण प्रणालियों के संदर्भ में मशीन की मरम्मत समस्याओं की प्रतीक्षा पंक्ति और विश्वसनीयता विश्लेषण की अनुसंधान पद्धिति के पहलुओं को रेखांकित करेंगे। जिन कुछ मुख्य विशेषताओं पर प्रकाश डाला जाना है उनमें विफलता विश्लेषण, अनुरक्षणीयता, अतिरिक्तता, अतिरिक्त आपातोपयोगी मशीनें स्विचन विफलता, प्रावकाश एवं अविश्वसनीय सर्वर, इष्टतम नियंत्रण नीतियां आदि हैं। प्रस्तुत विषय निर्माण प्रणाली डिजाइनरों के साथ-साथ शोधकर्ताओं के उल्लेखनीय उपयोग का होगा। साथ ही पंक्तिबद्ध सिद्धांत और भविष्य के शोध कार्यों के लिए एक मूल्यवान अंतर्दष्टि प्रदान करेगा।

कुँजी शब्द: विनिर्माण प्रणाली, पंक्ति सिद्धांत, मशीन मरम्मत, अतिरिक्तता, अनुरक्षणीयता

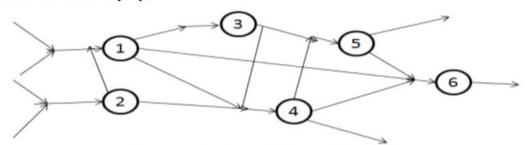
प्रस्तावना

विनिर्माण उद्योग में कारखानों, मिलों या यंत्रों का समावेश होता है, जो कि बिजली से चलने वाले उपकरण / मशीनों और भौतिक, यांत्रिक, जैविक या रासायनिक उत्पादों या घटकों द्वारा नए उत्पादों में रासायनिक परिवर्तन में लगे उपकरणों से निपटने वाले होते हैं। व्यापक अर्थों में, इसमें मानव गतिविधियों की एक विस्तृत श्रृंखला भी शामिल है, जो हस्तकला से लेकर उच्च

तकनीक तक से भिन्न है। इस प्रकार, मशीनों और एक प्रसंस्करण माध्यम (आमतौर पर मनुष्य) की मदद से तैयार माल में कच्चे माल के परिवर्तन को विनिर्माण प्रणाली के रूप में जाना जाता है। तीन मुख्य बाधाएँ जिन पर एक विनिर्माण प्रणाली का गणितीय मॉडलिंग निर्भर करता है, वे हैं मानव शक्ति, मशीन प्रणाली और तालिका स्तर।

विनिर्माण की इन चरम विशेषताओं ने निर्णय लेने वालों, वित नियंत्रकों, अर्थशास्त्रियों, गणितजों और विनिर्माण इंजीनियरों का सामूहिक ध्यान आकर्षित किया है तािक ग्राहकों की लगातार बढ़ती मांगों को पूरा करने के लिए प्रक्रिया में तेजी लाई जा सके और न्यूनतम लागत पर अधिकतम लाभ में बेहतर गुणवता बनाए रखी जा सके। यह आमतौर पर स्वीकार किया गया है कि विनिर्माण कार्यों में एक महान सुधार और एक बेहतर दक्षता आधुनिक विनिर्माण प्रौद्योगिकियों जैसे लचीली विनिर्माण प्रणालियों (एफ॰एम॰एस), सेलुलर विनिर्माण, कंप्यूटर-एकीकृत विनिर्माण (सी॰आई॰एम) के विवेकपूर्ण उपयोग की मदद से प्राप्त की जा सकती है, जो स्थान, क्षमता और नियंत्रण जैसी सुविधाओं के उचित प्रबंधन के लिए एक योजनाबद्ध लक्ष्य के साथ युग्मित है। सुविधाओं के समुचित प्रबंधन का लक्ष्य विनिर्माण प्रणाली के घटकों अर्थात गणितीय प्रणाली, तालिका स्तर और मानव संसाधनों के गणितीय मॉडलिंग की मदद से प्राप्त किया जा सकता है।

वर्तमान अध्ययन में, हम विभिन्न निर्माण स्थितियों पर विचार कर रहे हैं और अप्रत्याशित विफलता से निपटने वाली विनिर्माण प्रणाली के प्रदर्शन विश्लेषण के लिए कुछ मॉडलिंग पहलुओं और समाधानों के आधार पर सुझाव देने का प्रयास कर रहे हैं।


अविश्वसनीय विनिर्माण प्रणाली के लिए पंक्तिबद्ध मॉडलिंग

कई विनिर्माण अनुसंधान और प्रबंधन विज्ञान मॉडलों का उपयोग विभिन्न विनिर्माण स्थितियों में मॉडलिंग के उद्देश्य से किया गया है। एक विनिर्माण प्रणाली के लिए, विनिर्माण प्रक्रिया की बदलती गितशील प्रकृति के लिए प्रायिक / सांख्यिकीय तकनीकों के साथ सैद्धांतिक रूप से वर्णित उत्पादन प्रक्रियाओं के शिक्तशाली गिणितीय विश्लेषण की आवश्यकता के कारण प्रतीक्षा पंक्ति का सिद्धांत अस्तित्व में आया। पंक्ति या प्रतीक्षा पंक्ति मॉडल ने प्रदर्शन मॉडलिंग और उसके पारंपिर विश्लेषण के साथ-साथ सेवा संस्थान, ट्रांसफर लाइन और समुच्चयन लाइन आदि सिहत आधुनिक निर्माण प्रणालियों में महत्वपूर्ण भूमिका निभाई है। जैन (2017) ने समूह आगमन के साथ प्राथमिकता पंक्ति मॉडल का अध्ययन किया। पंक्ति विमुख (बाकिंग), सीम

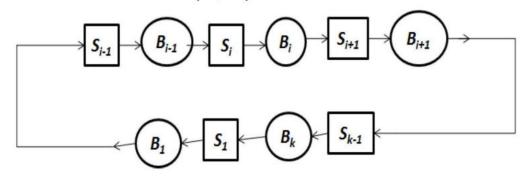
पुनः प्राप्ति (श्रेसहोल्ड रिकवरी), अविश्वसनीय सर्वर और वैकल्पिक सेवा एक आधुनिक विनिर्माण इकाई के भौतिक अभिन्यास में सेवा संस्थान, स्थानांतरण पंक्ति और एक समुच्चयन लाइन शामिल है। एक सेवा संस्थान वह जगह है जहां मशीनों का एक समूह छोटी मदों में एक ही वस्तु के विभिन्न भागों का उत्पादन करता है। इन भागों को मशीनों की सहायता से कार्यस्थल से स्टोर क्षेत्र में स्थानांतरित किया जाता है। इसके अलावा, इन भागों को एक विशिष्ट वस्तु तैयार करने के लिए इकट्ठा किया जाता है। तैयार वस्तुओं को फिर से संयंत्र से कार्यस्थल में स्थानांतरित कर दिया जाता है। इस प्रकार, कच्चे माल, अर्ध-तैयार और तैयार माल स्वयं को संसाधित करने के लिए मशीनों के सामने एक पंक्ति बनाते हैं। मशीनों से लैस स्टेशनों को पंक्तिबद्ध नेटवर्क के नोड के रूप में माना जाता है। कच्चे माल या उसके भाग एक नोड के माध्यम से नेटवर्क में प्रवेश करते हैं तथा विभिन्न नोडों पर संसाधित होते हैं और कुछ नोडों के उपरांत निकाय को छोड़ देते हैं।

2.1 सेवा संस्थानों के लिए प्रतीक्षा पंक्ति मॉडलिंग

एक सेवा संस्थान प्रणाली एक उत्पादन प्रक्रिया है जो एक संस्थान के फर्श के अभिन्यास द्वारा विशिष्ट होती है जहां मशीनें जो कार्यात्मक रूप से समान हैं, एक क्षेत्र में एक साथ स्थित होती हैं। यह उच्च अनुकूलित उत्पादों के कम मात्रा वाले उच्च किस्म के उत्पादन के लिए बनाया जाता है। एक सेवा संस्थान एक ऐसे उत्पादन अभिन्यास का उपयोग करता है जो अधिक प्रक्रिया उन्मुख हो। इष्टतम बैच आकार, आवश्यक क्षमता और नियोजन नियमों के प्रदर्शन को निर्धारित करने हेतु सेवा संस्थानों के लिए पंक्तिबद्ध मॉडल का बड़े पैमाने पर उपयोग किया जाता है। एक सेवा संस्थान का प्रदर्शन कार्यों के आगमन और मशीनों के सेवा पैटर्न, मशीनों की अविश्वसनीयता, कार्यखंडों की रूटिंग और बफ़र्स की पंक्तियों में पंक्ति अनुशासन से सबसे अधिक प्रभावित होता है। अधिकांश मामलों में पर्याप्त भंडारण स्थान की उपलब्धता के कारण बफर क्षमता एक बाधा नहीं है।

चित्र 1: एक सेवा संस्थान के लिए खुला पंक्ति नेटवर्क

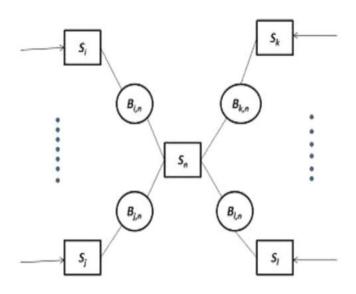
सेवा संस्थानों के विश्लेषण में पहला बड़ा योगदान जैक्सन (1963) के शोधपत्र के कारण था, जिन्होंने खुले पंक्ति नेटवर्क का उपयोग किया था, जैसा कि आकृति 1 में दिखाया गया है, सेवा संस्थान को मॉडल करने के लिए उन्होंने दिखाया कि यदि एक पॉइसन प्रक्रिया के बाद सेवा कार्य नेटवर्क में आता है, तो सर्वर का सेवा समय तेजी से बंटित किया जाता है और सेवा कार्य मार्ग को मार्कीव श्रृंखला, क्लासिक M/M/C (या M/M/1) द्वारा मॉडल किया जा सकता है। प्रत्येक स्टेशन के प्रदर्शन की भविष्यवाणी के लिए सूत्र का उपयोग किया जा सकता है। शर्मा और जैन (2015) ने एक गतिशील कार्यशाला नियोजन के प्रसंभाव्य (Stochastic) प्रकृति का विश्लेषण किया। अनुक्रम समय को अनुक्रम पर निर्भर मानते हुए, उन्होंने अनुकार तकनीक लागू करके परिणाम प्राप्त किए।


2.2 प्रवाह लाइनों के लिए पंक्तिबद्ध मॉडलिंग

एक प्रवाह रेखा विनिर्माण प्रणाली का एक हिस्सा है जिसे मानकीकृत उत्पादों के उच्च-मात्रा उत्पादन के लिए डिज़ाइन किया गया है। इसमें स्टेशन और बफ़र ऐसे होते हैं जैसे कि भाग एक निर्दिष्ट अनुक्रम में उन पर आते हैं। सिस्टम में याद्दिच्छिकता, प्रसंस्करण समय में याद्दिच्छिकता या मशीनों के टूटने और मरम्मत के कारण याद्दिछकता, के कारण होती है। प्रवाह लाइनों को भाग हस्तांतरण की विशेषता के अनुसार तुल्यकालिक, अतुल्यकालिक, और सतत वर्गीकृत किया गया है। संकुचित भाग स्थानांतरण वाली प्रवाह रेखा को स्थानांतरण रेखाओं के रूप में जाना जाता है जबिक असंकुचित भाग ट्रांसफर वाली प्रवाह रेखा को उत्पादन लाइन कहा जाता है।

चित्र 2: एक प्रवाह लाइन का मूल खुला पंक्ति नेटवर्क

प्रवाह लाइनों को श्रृंखला या अग्रानुक्रम पंक्तियों के साथ-साथ पंक्तिबद्ध नेटवर्क के रूप में भी मॉडल किया जा सकता है जहां नेटवर्क उस प्रगुण को प्रदर्शित करते हैं कि उत्पाद के ऑन-लाइन निरीक्षण की आवश्यकता के अलावा सामग्री या उत्पाद की गति अप्रत्यक्ष है। चित्र 2 एक प्रवाह लाइन का एक मूल खुला पंक्तिबद्ध नेटवर्क प्रस्तुत करता है। लाइन में एक श्रृंखला में व्यवस्थित स्टेशनों की संख्या शामिल है। प्रत्येक स्टेशन (S_1) एक बफर (B_1) से पहले है। पहले स्टेशन S_1 से पहले का बफर परिमित या अनंत हो सकता है। लेकिन सभी अंतर-स्टेशन बफ़र परिमित हैं। भागको स्टेशन 1 में S_1 तंत्र कहते हैं, जो क्रम में सभी स्टेशनों से गुजरता हैं। प्रत्येक स्टेशन पर एक मशीन द्वारा भागों पर कार्य किया जाता है। भाग तैयार रूप में विं स्टेशन के माध्यम से सिस्टम को छोड़ देता है।


चित्र 3: प्रवाह लाइनों के लिए बंद पंक्ति नेटवर्क

उत्पादन लाइन के लिए एक के (k)-स्टेशन बंद लूप चित्र 3 में प्रस्तुत किया गया है। एक बंद लूप उत्पादन प्रणाली में एक स्थिर चक्र भंडारण बफर और कार्य स्टेशनों के माध्यम से सामग्री की एक निरंतर मात्रा बहती है। इस प्रकार की प्रणाली अक्सर निर्माण प्रक्रियाओं में होती है जो पैलेट या जुड़नार का उपयोग करती हैं।

2.3 सम्च्चयन लाइन का पंक्ति निदर्शन

समुच्चयन / असमुच्चयन नेटवर्क को प्रवाह रेखा संरचना के विस्तार के रूप में माना जा सकता है। यह एक विनिर्माण प्रणाली है जिसमें मशीनें समुच्चयन संक्रिया करती हैं। समुच्चयन निकाय को दो भागों की प्रणाली में विभाजित किया जाता है (i) जो एक कार्यखंड में घटकों को जोड़ते हैं, और (ii) सिस्टम जो विभिन्न खंडों को इकट्ठा करता है जिन्हें पहले से ही निर्माण प्रणाली के भीतर संसाधित किया जा चुका है। मॉडलिंग और विश्लेषण के दृष्टिकोण से, पहला भाग एक प्रवाह रेखा पर जाता है, दूसरा एक नेटवर्क बनाता है। A नेटवर्क का एक उदाहरण चित्र 4 में प्रस्तुत किया गया है। A/D प्रणाली में A स्टेशनों का एक समुच्चयन शामिल है जो बफ़र्स के एक समुच्चयन से जुड़े हुए हैं, जहां प्रत्येक बफर में एक अनुप्रवाह (डाउनस्ट्रीम) स्टेशन और एक उच्चप्रवाह (अपस्ट्रीम) सर्वर होता है। पद जुड़ते हैं और कांटे का उपयोग आम तौर पर क्रमशः

समुच्चयन और असमुच्चयन करने के लिए किया जाता है। A स्टेशन में निवेश और निर्गम बफ़र्स के समुच्चयन हैं। निवेश और निर्गम बफ़र्स की संख्या समान नहीं हो सकती। A स्टेशन प्रत्येक उच्चप्रवाह बफ़र्स से एक इकाई को खींचता है और प्रत्येक अनुप्रवाह बफ़र्स को एक इकाई प्रदान करता है। यह चित्र (4) में दिखाई दे रहा है कि प्रत्येक बफ़र एक अनुप्रवाह स्टेशन और एक उच्चप्रवाह स्टेशन से जुड़ा हुआ है। प्रत्येक स्टेशन कम से कम एक बफर से जुड़ा हुआ है।

चित्र 4: असेंबली / डिसेंबली नेटवर्क

A सिस्टम के लिए अनुमानित तरीके अविश्वसनीय मशीनों से संबंधित हैं। ये विधियाँ उत्पादन और हस्तांतरण लाइनों के विश्लेषण के लिए उपयोग किए जाने वाले अपघटन विधि के विस्तार हैं। गेर्शविन (1991) ने A नेटवर्क के लिए अपघटन विधि विकसित की, जो प्रवाह लाइन अपघटन विधि पर आधारित है।

3. अविश्वसनीय विनिर्माण प्रणाली के पंक्तिबद्ध विश्लेषण के कुछ अन्य परिप्रेक्ष्य

पंक्तिबद्ध मॉडिलंग के परिप्रेक्ष्य में एक दीर्घकालिक प्रणाली का डिज़ाइन करना है, एक मध्यम अविध की योजना और एक अविश्वसनीय विनिर्माण प्रणाली के घटकों का एक अल्पकालिक नियंत्रण शामिल है। एक निर्माण प्रणाली का प्रदर्शन इसकी मशीनिंग प्रणाली से अत्यधिक प्रभावित होता है। प्रौद्योगिकी और मशीन डिजाइनों में प्रगति के कारण विनिर्माण प्रक्रिया में एक क्रांतिकारी बदलाव आया है जो कृतिम बुद्धिमता से युक्त हैं। निर्माण प्रणाली का डिज़ाइन

करना और योजना बनाते समय, निर्णय निर्माताओं को एक पर्याप्त तालिका स्तर, पेशेवरों और मशीनों की संख्या तय करनी होती है ताकि मशीन के अनियोजित टूटने के बाद भी उत्पादन प्रक्रिया बाधित न हो।

3.1 एक अविश्वसनीय विनिर्माण प्रणाली के लिए मशीन की मरम्मत समस्याएं

पेशेवर ऑपरेटरों की देखरेख में उन्नत और स्वचालित मशीनिंग प्रणाली से सुसज्जित एक निर्माण इकाई अधिक उत्पादन कर सकती है। लेकिन मशीनों के लिए आयु और उपयोग दोनों के सापेक्ष विफल होने और ख़राब होने का खतरा होता है। उत्पादन में रुकावट की स्थिति से बचने के लिए लेने वाले एक निर्णय मशीनों, उनके ऑपरेटरों और मरम्मत करने वालों का उचित संयोजन करने का स्झाव दिया जाता है। उसे तय करना होता है:

- (i) एक निर्माण प्रणाली में कुल मिलाकर कितनी मशीनें होनी चाहिए? उनमें से कितने को पुर्जों के रूप में आयोजित किया जा सकता है? उन्हें किस गित से चलाना है?
- (ii) सुचारू रूप से चलने के लिए निर्माण प्रणाली में कितनी सेवा या मरम्मत की सुविधा की आवश्यकता है? आरक्षित या सुविधाकॉल पर कितना आयोजित किया जा सकता है? कितनी जल्दी यह सेवा या मरम्मत प्रदान करनी चाहिए?
- (iii) किस क्रम में मशीनों की एक पंक्ति की मरम्मत या सर्विस की जानी है?

इन चुनौतीपूर्ण सवालों के जवाब देने के लिए, कई मशीन मरम्मत की समस्याओं का सूत्रीकरण और विश्लेषण कई शोधकर्ताओं द्वारा किया गया है। जैन आदि (2010) ने मशीन की मरम्मत की समस्या के कुछ दृष्टिकोणों को विस्तार से बताया।

4. अविश्वसनीय विनिर्माण प्रणाली में अतिरिक्तता के मुद्दे

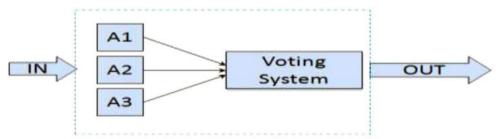
सिस्टम की उपलब्धता में सुधार के लिए अतिरिक्तता एक बहुत ही सामान्य बात है और सिस्टम के अवरोधकाल के कारण अवांछनीय उच्च लागत को कम करने के लिए एक आकर्षक विकल्प के रूप में इसका उपयोग किया गया है।

4.1 आपाती अतिरिक्तता प्रणाली

अतिरिक्त मशीनों, एक इकाई की विफलता दर भार के अधीन होने के कारण तुलनात्मक रूप से बढ़ी हुई विफलता दर के मामले में दूसरों की विफलता दर से दृढ़ता से प्रभावित होती है।

अतिरिक्त यंत्र सहायता (स्पेयर पार्ट सपोर्ट) के माध्यम से अतिरिक्तता द्वारा सिस्टम इंजीनियरों को एक इष्टतम लागत पर वांछित संयंत्र उपलब्धता प्राप्त करने में मदद मिल सकती है। चूंकि संचालन इकाइयों का अप्रत्याशित रूप से विफल होने का खतरा है, इसलिए अतिरिक्त प्रावधान प्रणाली की सुचारू और निर्बाध कार्य प्रणाली सुनिश्चित करता है।

आपाती अतिरिक्तता प्रणाली को तीन भागों में वर्गीकृत किया गया है:


- (i) गरम आपाती इकाई: एक इकाई जिसकी एक संचालन इकाई के समान विफलता दर है, को गरम आपाती के रूप में जाना जाता है। गरम आपाती यूनिट सांख्यिकीय रूप से स्वतंत्र है क्योंकि इसकी विफलता दर अन्य इकाइयों की विफलता दरों से प्रभावित नहीं है कि इकाई सिक्रिय स्थिति में है या नहीं।
- (ii) उष्ण आपाती इकाई: उष्ण आपाती इकाइयों की विफलता दर संचालन यूनिट की विफलता दर से कम होती है। इस प्रकार, जब तक संचालन इकाई विफल नहीं होती, तब तक उष्ण आपाती इकाइयाँ कम भार वहन करती हैं। एक विफल संचालन यूनिट को बदलने के बाद, एक गर्म आपाती यूनिट की विफलता की विशेषताएं संचालन यूनिट के समान होती हैं। हाल ही में, कुमार आदि (2019) ने उष्म आपाती इकाई प्रावधान के साथ दो सर्वर मशीन की मरम्मत प्रणाली पर चर्चा की।
- (iii) शीत आपाती इकाई: एक आपाती मोड में शीत आपाती यूनिट की शून्य विफलता दर होती है या आपाती स्थिति में एक शीत आपाती इकाई की विश्वसनीयता संरक्षित होती है। जब शीत आपाती इकाई एक विफल संचालन इकाई का प्रभार लेती है, तो इसकी विफलता की विशेषता सिक्रिय इकाई की तरह ही हो जाती है। शीत आपाती अतिरिक्त रणनीति के साथ विश्वसनीयता-अतिरिक्त आवंटन समस्या का अर्दकन और हमदानी (2014) द्वारा विश्लेषण किया गया था।

4.2 अतिरिक्त प्रणालियों के विशेष प्रकार

उपलब्धता और विश्वसनीयता के उच्च स्तर को प्राप्त करने के लिए, साहित्य में अतिरिक्त इकाई के कई आर्किटैक्चर उपलब्ध हैं।

(I) त्रिपक्षीय मॉड्यूलर निरर्थक प्रणाली: त्रिपक्षीय मॉड्यूलर निरर्थक प्रणाली अत्यधिक विश्वसनीय दोष सहिष्णु प्रणाली है जिसमें तीन समान इकाइयां शामिल हैं जो एक समर्थन

प्रणाली द्वारा समर्थित हैं। तीन इकाइयाँ समानांतर या एक साथ प्रदर्शन करती हैं और समर्थन प्रणाली के परिणाम को संसाधित करती हैं जहाँ समर्थन प्रणाली सर्वश्रेष्ठ निर्गम का चयन करती है। एक त्रिमॉइयुलर अतिरेक प्रणाली का आर्किटैक्चर चित्र 5 में दिया गया है।

चित्र 5: एक त्रिपक्षीय मॉड्यूलर निरर्थक प्रणाली का आर्किटैक्चर

मरकस आदि (2010) ने अपने अध्ययन में टी॰ एम॰ आर॰ (TMR) की अवधारणा पर विचार किया और निष्कर्ष निकाला कि त्रिमॉड्यूलर अतिरेक की मदद से प्रणाली की विश्वसनीयता में उल्लेखनीय सुधार हुआ है।

(II) द्वि मॉड्यूलर अतिरिक्तता प्रणाली : दो इकाई प्रणाली सिस्टम को द्वि मॉड्यूलर रिडंडेंट प्रणाली कहा जाता है, जहाँ प्रणाली के घटकों को समानार्थ (ड्रुप्लीकेट) किया जाता है। जिसमें यह प्रणाली एक बेहतर निर्गम का चयन करती है। उदाहरण के लिए रॉयल नेवी द्वारा उपयोग की जाने वाली पनडुब्बी नियंत्रण प्रणाली द्वि मॉड्यूलर अतिरिक्त प्रणालियों पर आधारित है। अब चार और पांच मॉड्यूलर अतिरिक्त प्रणाली भी उपलब्ध हैं।

अविश्वसनीय विनिर्माण प्रणाली के अनुरक्षणीयता के मुद्दे

एक निर्माण प्रणाली की स्थिरता को पूर्वनिर्धारित समय सीमा के भीतर सफल मरम्मत क्रिया करने की संभावना के रूप में परिभाषित किया गया है। यह समय की विफलता को बढ़ाकर प्रणाली की उपलब्धता में सुधार करने में मदद करता है। प्रणाली अनुरक्षण विश्लेषण और प्रणाली विश्वसनीयता विश्लेषण के संयोजन से, एक अविश्वसनीय निर्माण प्रणाली के समग्र प्रदर्शन (उपलब्धता, डाउनटाइम, आदि) से संबंधित कई उपयोगी परिणाम प्राप्त किये जा सकते हैं जो एक मरम्मत योग्य प्रणाली के डिजाइन के बारे में निर्णय लेने में मददगार साबित हो सकते हैं। ।

स्थिरता को तीन भागों में बांटा गया है:

(i) निरोधी अनुरक्षणीयता

एक निर्माण प्रणाली की निरोधी अनुरक्षणीयता, नई इकाइयों द्वारा पुरानी इकाइयों को बदलने में विफलता को रोकने, विफलता से पहले गिरावट की पहचान करने, मरम्मत करने या विफलता से पहले की जगह लेने और विफलता के समय का विस्तार करने पर केंद्रित है।

(ii) प्रयुक्तित्व अनुरक्षणीयता

यह अनुरक्षणीयता निर्माण प्रणाली की पूर्वानुमानात्मक स्थिरता सॉफ्टवेयर की पुनः प्राप्ति और रिबूट की मदद से अक्षम विफलता के संकेतकों पर जोर देती है।

(iii) संशोधी अनुरक्षणीयता

संशोधी अनुरक्षणीयता का लक्ष्य मरम्मत समय और बार-बार विफलताओं को कम करने पर है। यह मरम्मत करने वाले या सर्वर जैसे मल्टी-सर्वर, अतिरिक्त सर्वर और कई अन्य विशेषताओं पर आधारित है।

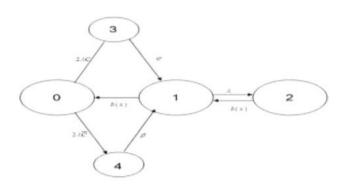
5.1 पुनः प्राप्ति और रिबूट द्वारा दोष का पता लगाना और सुधार करना

एक प्रणाली के अवरोध काल को दोष का पता लगाने की तेज दर, इसके निदान, अलगाव, उपचारात्मक कार्यवाही और सिस्टम की पूर्ण परिचालन स्थिति द्वारा कम किया जा सकता है। हाई-टेक प्रणाली एक अन्तनिहित दोष व्यवहार तंत्र से लैस होते हैं, जिसके आधार पर प्रणाली तुरंत दोष से मुक्त हो जाता है और सही दक्षता के साथ काम करता है। इस प्रकार, विनिर्माण प्रणाली की विश्वसनीयता में सुधार हुआ है।

टूट फूट के कारण, सभी प्रणाली पूरी तरह से या आंशिक रूप से विफल होने के अधीन हैं। स्वचालित प्रणालियों में, एक दोष का पता लगाने के लिए एक इनबिल्ट त्रुटि समाधान उपकरण या सॉफ्टवेयर स्थापित किया जाता है, जो दोष पूर्ण यूनिट और इसके अलगाव का निदान करता है। एक सुधारात्मक कार्रवाई के रूप में, प्रणाली स्वयं को ठीक करता है और दोषपूर्ण इकाई को हटाकर पूर्ण संचालन स्थिति तक पहुंचता है। प्रणाली की उपलब्धता इस तंत्र की दक्षता पर निर्भर करती है।

रिबूट प्रक्रिया का उपयोग व्यवस्था के प्रारूप में पहले से स्थापित कुछ पूर्व-डिज़ाइन किए गए या पूर्व-निर्दिष्ट प्रोग्राम के बाद एक संचालन तंत्र को लोड करके प्रणाली को पुन: आरंभ करने के लिए किया जाता है। दूसरे शब्दों में, यदि दोष निवारण युक्ति / तंत्र दोष को आच्छादन करने में

विफल रहता है, तो रिबूट प्रक्रिया द्वारा दोष को हटा दिया जाता है। एक हार्डवेयर विफलता के मामले में, दोषपूर्ण हार्डवेयर को हटाना सबसे अच्छा विकल्प है लेकिन यदि कोई सॉफ़्टवेयर दोष होता है, तो दोष को केवल रिबूट या पुनः संचालन सिक्रय द्वारा हटाया जा सकता है। कंप्यूटर तंत्र पुनः शुरू करने से पहले रिबूट समय लेता है। जैन और रानी (2013) ने अपनी शोध जांच में रिबूट की घटनाओं पर विचार करके विश्वसनीयता और मरम्मत योग्य प्रणालियों की उपलब्धता के उपाय प्राप्त किए। शेखर आदि (2018) ने प्रस्तावित विश्वसनीयता मॉडल और रिबूट और पुनः प्राप्ति देरी के साथ दोष सिहष्ण् मशीनिंग प्रणाली का विश्लेषण किया।


5.2 एक अविश्वसनीय विनिर्माण प्रणाली का संशोधी अन्रक्षण

कभी-कभी, एक मशीन की त्रुटि पुनः प्राप्ति या रिब्ट सक्रिय द्वारा नहीं सुधारी जाती है और यूनिट पूरी तरह से विफल हो जाती है। सुधारात्मक रखरखाव में एक पूरी तरह से विफल इकाई को एक मरम्मत स्टेशन पर भेजा जाता है और एक मरम्मतकर्ता द्वारा मरम्मत की जाती है। एक मरम्मत करने वाला एक पेशेवर यांत्रिक या मशीन हो सकता है जो किसी निर्माण प्रणाली के निवारक रखरखाव जैसे निरीक्षण, सफाई, स्नेहन, संरेखण, समायोजन, मरम्मत और प्रतिस्थापन से संबंधित कार्यों का अच्छी तरह से सुनिश्चित करता है ताकि किसी भी निर्वाध संचालन को सुनिश्चित किया जा सके। अनियोजित टूटने की संभावनाओं को कम करके और उपकरणों के जीवन काल का विस्तार करके विनिर्माण प्रणाली को सशक्त बनाता है।

कार्यप्रणाली पक्ष

जिटल विनिर्माण प्रणालियों के प्रदर्शन की भविष्यवाणी करने के लिए कई प्रमुख शोधकर्ताओं द्वारा विभिन्न पंक्तिबद्ध मॉडल विकसित किए गए हैं। एक अविश्वसनीय निर्माण प्रणाली के जिटल पंक्तिबद्ध मॉडल के लिए अधिक सटीक परिणाम प्राप्त करने के लिए, विभिन्न प्रकार की विश्लेषणात्मक और संगणकीय तकनीकों को शामिल करने वाली विभिन्न प्रकार की तकनीकों को विकसित किया गया है। पंक्तिबद्ध सिद्धांत के माध्यम से एक अविश्वसनीय निर्माण प्रणाली के प्रसंभाव्य मॉडलिंग में उल्लेखनीय रूप से तेजी से उन्नित ने कंप्यूटर अनुकार को अनुसंधान के लिए प्रमुख कार्यप्रणाली बनने के लिए प्रेरित किया। कुछ आमतौर पर उपयोग किए जाने वाले प्रतीक्षापंक्ति तरीकों में जन्म-मृत्यु प्रक्रियाओं, पूर्णांक-अंतर समीकरणों, आव्यूह - ज्यामितीय पद्धिति और अन्तः स्थापित मार्कीव शृंखलाओं का उपयोग शामिल है। जो समस्याएं सटीक समाधान के लिए स्वयं से सुधार नहीं होने देती हैं, उनके लिए अधिकतम एन्ट्रॉपी और

प्रसार सन्निकटन काफी उपयोगी हो गए हैं। संख्यात्मक प्रदर्शन के लिए अनुकार का बढ़ा उपयोग आंशिक रूप से कंप्यूटर प्रौद्योगिकी में प्रगति के लिए जिम्मेदार है जो इसे प्रदर्शन करने के लिए अपेक्षाकृत सरल बनाता है। इसके अलावा, कई सॉफ्टवेयर पैकेज उपलब्ध हैं जो मैटलैब (MATLAB), मैपल (MAPLE), मैथमटिका (MATHEMATICA) जैसे एल्गोरिदम के निर्माण और निष्पादन की स्विधा प्रदान करते हैं।

चित्र 6: रिब्ट और पुनः प्राप्ति के साथ दो यूनिट समानांतर शृंखला प्रणाली

पद्धित संबंधी पहलू को समझाने के लिए, हम एक इकाई प्रणाली पर चर्चा करते हैं जिसमें सामान्य मरम्मत, रिबूट और पुनः प्राप्ति के साथ दो इकाइयां शामिल हैं जैसा कि चित्र 6 में दिखाया गया है। हम मानते हैं कि प्रणाली में दो संचालन इकाइयाँ शामिल हैं जो पूरी तरह से नोड जीरो पर प्रदर्शन करती हैं। जब λ चरघातांकी दर वाली संचालन इकाइयों में से एक विफल हो जाती है, तो एक सुरक्षा स्विच सफलतापूर्वक एक आच्छादनीय प्रायिकता C के साथ अन्य इकाई पर स्विच करके सेवा को पुनर्स्थापित करता है और प्रणाली अवस्था एक में प्रवेश करती है। अवस्था तीन पुनः प्राप्ति अवस्था प्रस्तुत करती है और σ पुनः प्राप्ति दर को दर्शाता है। यदि दोष पूर्ववत रहता है, तो सिस्टम एक पूरक प्रायिकता (1-C) के साथ अवस्था चार में प्रवेश करता है और न पता चलने वाले दोषको β -दर के साथ रिबूट संक्रिय कार्य द्वारा दूर किया जाता है। जब प्रणाली में केवल एक सक्रिय इकाई बची होती है तब रिबूट और पुनः प्राप्ति नहीं होती है । असफल इकाइयों की मरम्मत को प्रायिकता B(x), प्रायिकता घनत्व फ़ंक्शन b(x) के व्यापक बंटनऔर b_1 के रूप में मरम्मत के समय का पालन करके किया जाता है।

मॉडल को विकसित करने के लिए स्थिर स्थिति समीकरणों के निम्नलिखित सेट तैयार किए जा सकते हैं:

$$2\lambda P_0 + P_1(0) = 0 \tag{1}$$

$$-\beta P_4 + 2\lambda \overline{C} P_0 = 0 \tag{2}$$

$$-\sigma P_3 + 2\lambda C P_0 = 0 \tag{3}$$

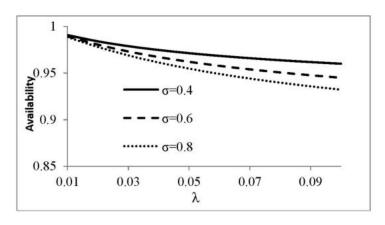
$$-\frac{\partial}{\partial x}P_1(x) = -\lambda P_1(x) + \sigma b(x)P_3 + \beta b(x)P_4 + b(x)P_2(0)$$
(4)

$$-\frac{\partial}{\partial x}P_2(x) = \lambda P_2(x) \tag{5}$$

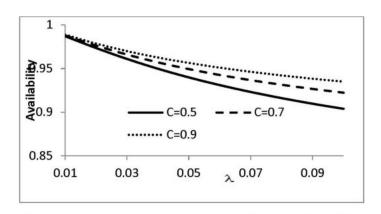
अब, सिस्टम की उपलब्धता निम्नलिखित द्वारा प्राप्त की जाती है:

$$A(\infty) = P_0 + P_1 + P_3.$$
 (6)

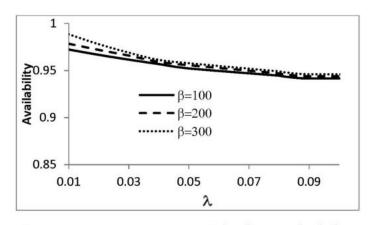
लाप्लास रूपान्तर और कुछ बीजीय जोड़ तोड़ करने से हम निम्नलिखित प्राप्त करने में सक्षम हो जाते हैं:


$$A(\infty) = \frac{\sigma\beta \left[2\lambda + \left\{ \lambda \left(1 + \frac{2\lambda C}{\sigma} \right) - 2\lambda B^*(\lambda) \right\} \right]}{\left[\sigma\beta \left(2\lambda b_1 + B^*(\lambda) \right) + B^*(\lambda) \left(2\lambda C\beta + 2\lambda \overline{C}\sigma \right) \right]}$$
(7)

यदि मरम्मत का समय चरघातांकी बंटन का अनुसरण करता है, तो


$$B^*(\lambda) = \frac{\mu}{\lambda + \mu}, \quad b_1 = \frac{1}{\mu}$$

इसी प्रकार विभिन्न बंटनों का मरम्मत के समय के लिए उपयोग किया जा सकता है।


शीघ्रता से वितिरत मरम्मत समय के लिए उपलब्धता सूचकांकों की गणना करने के लिए, दोष प्रणाली प्राचल , λ =0.1, C=0.85, σ =0.8, β =300, μ =10. सेट किए गए हैं। चित्र 7 से 9 के आंकड़ों से स्पष्ट है कि उपलब्धता λ के घटते मूल्यों के लिए कम हो जाती है। चित्र 7 से पता चलता है कि यदि हम घातीय वितिरत मरम्मत समय मामले के लिए σ बढ़ाते हैं तो उपलब्धता कम हो जाती है । चित्र 8 और चित्र 9 क्रमशः C और β के मूल्यों को बढ़ाने के लिए उपलब्धता में वृद्धि दर्शाते हैं।

चित्र 7: प्राप्यता बनाम λ द्वारा σ के विचर मानों को लिए

चित्र 8: प्राप्यता बनाम λ द्वारा C के विचर मानों को लिए

चित्र 9: प्राप्यता बनाम λ द्वारा β के विचर मानो को लिए

7. निष्कर्ष

हमने अविश्वसनीय निर्माण प्रणाली के क्षेत्र में कुछ उल्लेखनीय योगदानों का एक संक्षिप्त सर्वेक्षण प्रदान किया है, जो कि यान्त्रिकी प्रणाली और पेशेवर व्यावसायिक समूह के उद्देश्यों के सापेक्ष है। अविश्वसनीय निर्माण प्रणालियों के बेहतर प्रदर्शन के लिए बढ़ती आवश्यकता के साथ, पिछले तीन दशकों में पंक्ति सिद्धांतवादी दृष्टिकोण महत्वपूर्ण परिवर्तन से गुजरा है। विनिर्माण प्रणाली के लिए पंक्तिबद्ध मॉडलिंग भविष्य में विकसित होने और अधिक जटिल होने की उम्मीद है। विनिर्माण प्रणाली के क्षेत्र में उत्पन्न होने वाली नई प्रौद्योगिकियों और भीड़ की समस्याओं पर ध्यान देना सार्थक है। एक नया मॉडलिंग फीचर जो पिछले कुछ दशकों में दिखाई दिया है वह आपाती इकाइयों या अतिरिक्त प्रणाली का उपयोग है। मुख्य नई विशेषता कच्चे माल के लिए इकाइयों की अनुपलब्धता है, जो मशीनों की विफलता तथा सर्वर अवकाश के कारण होती है, और आरक्षित स्थिति से उन्हें सही करने या वापस लेने का विकल्प होता है। बहु सर्वर, अतिरिक्त सर्वर, सर्वर अवकाश, अविश्वसनीय सर्वर से जुड़े निर्माण प्रणाली का सुधारात्मक रखरखाव पिछले चार दशकों से बहुत तेजी से विकसित हो रहा है। हमें उम्मीद है कि अध्ययन शोधकर्ताओं के साथ-साथ पेशेवरों के लिए भी मददगार साबित होगा।

संदर्भ

- Ardakan, M. A. and Hamadani, A. Z. (2014): Reliability-redundancy allocation problem with cold-standby redundancy strategy, Simulation Modelling Practice and Theory, Vol. 42, pp. 107-111.
- 2. Dallery, Y and Gershwin, S. B. (1992): Manufacturing flow line systems: A review of models and analytical results, Queueing Systems: Theory and Applications, Vol. 12, No. 1-2, pp. 3 94.
- Gershwin, S.B. (1991): Assembly/disassembly systems: An efficient decomposition algorithm for treestructured networks, IEEE Transaciions, 2314, pp. 302-314.
- Jackson, J.R. (1963): Jobshop like Qucucing Systems, Management Sciences, Vol. 10, No. 1, pp. 131-142.
- 5. Jain, M, Rakhee, and Singh, M. (2004): Bilevel control of degraded machining system with warm standbys setup and vacation, Applied Mathematical Modelling, Vol. 28, pp. 1015-1026.
- Jain, M. and Sulekha Rani (2013): Availability analysis for repairable system with warm standby, switching failure and reboot delay, International Journal of Mathematics in Operational Research, Vol. 5, No. 1, pp. 19-39.
- Jain, M. (2017): Priority queue with batch arrival, balking, threshold recovery, unreliable server and optional service, On Line first, RAIRO-Operations Research, <u>Vol.</u> 51, No. 2, pp. 417-432.
- Jain, M., Sharma, C.G., Pundhir, R.S. (2010): Some perspectives of machine repair problems, IJE Transactions B: Applications, Vol.23, No. 3&4, pp. 253-268.
- Kumar, K, Jain, M., Shekhar, C. (2019): Machine repair system with F-policy, two unreliable servers and warm standbys, Journal of Testing and Evaluation, ASTM Journal, Vol. 47, No. 1, pp. 1-23.
- Marques E. C., Naviner, L. A. B. and Naviner, J.-F. (2010): An efficient tool for reliability improvement based on TMR, Microelectronics Reliability, Vol. 50, No. 9–11, pp.1247-1250.
- 11. Martinelli, F. (2010): Manufacturing systems with a production dependent failure rate: structure of optimality, IEEE Control Systems Society., Vol. 55, No. 10, pp. 2401 2406.
- 12. Sharma, P and Jain, A. (2015): Stochastic dynamic job shop scheduling with sequence dependent setup times: Simulation experimentations, Journal of Engineering and Technology, Vol. 5, No. 1, pp.19-25.
- 13. Shekhar, C., Jain, M., Raina, A.A., Iqbal, J. (2018): Reliability prediction of fault tolerant machining system with reboot and recovery delay, International Journal of Systems Assurance Engineering and Management, Vol. 9, No. 2, pp. 377-400.

बहु अवरोधित दायीं धमनी में रक्त प्रवाह के स्वभाव: संगणकीय द्रव गतिशीलता विश्लेषण

अग्रज गुप्ता

संगणकीय एवं समेकित विज्ञान संस्थान जवाहरलाल नेहरू विश्वविदयालय, नई दिल्ली

ई मेल: <u>agraj.raghav@gmail.com</u>

डॉ. गजेन्द्र प्रताप सिंह

संगणकीय एवं समेकित विज्ञान संस्थान जवाहरलाल नेहरू विश्वविदयालय, नई दिल्ली

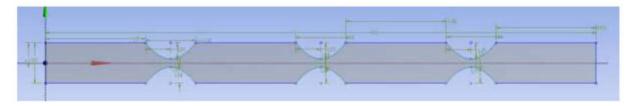
ई मेल: gajendra@mail.jnu.ac.in

सार: इस शोधपत्र में, एक अस्थिर(unsteady गणितीय मॉडल, एक दाहिने कोरोनरी धमनी में 75% से अधिक बहु अवरोधों (multiple stenosed) की उपस्थिति में (तीन स्थानों पर) रक्त प्रवाह के चिरत्रों का अध्ययन करने के लिए विकसित किया गया है। प्रवाह को समतलीय (planar) रूप में लिया गया है, तथा एक बहु अवरोधित त्रिआयामी धमनी की रूपरेखा से बहु अवरोधित धमनी की रूपरेखा से बहु अवरोधित धमनी की रूपरेखा ली गई है[1] जिससे कि रक्त प्रवाह द्विआयामी हो जाता है। गित और प्रारंभिक स्थितियों को कारिउ रक्त प्रवाह मॉडल (Carreau Blood Flow Model) में उचित विकल्प के साथ गित के शाषी (governing) समीकरणों एवं विभिन्न अनुसंधानों से प्राप्त वास्तविक आंकड़ो से अनुरूपण किया गया है। इस अवरुद्ध धमनी में वास्तविक आंकड़े के साथ निरूपण से सतह स्पर्शी प्रतिबल (wall shear stress), उच्चतम अवरुद्ध बिंदु पर रक्त के वेग के साथ साथ रेनॉल्ड'स अंक, धमनी की सतह पर दबाव, रक्त के वेग के द्वारा उत्पन्न गितज ऊर्जा एवं भ्रमिलता के प्रभाव को समझा गया है। इस विश्लेषण से पता चलता है कि अवरोधों के उच्चतम बिंदुओं पर रक्त की गित के साथ रेनॉल्ड' अंक, सतह स्पर्शी प्रतिबल सर्वाधिक, धमनी की सतहों पर दवाव में कमी, प्रतीत होती है तथा दो अवरोधों के मध्य में गितज ऊर्जा और भ्रमिलग (vorticity) में भी बढ़ोतरी हो जाती है।

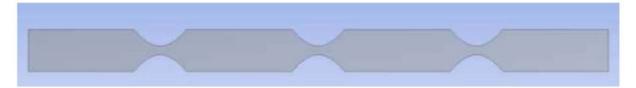
कुंजी शब्द : बहु-अवरोध, कोरोनरी धमनी, दीवार कतरनी दबाव, गतिज ऊर्जा, भयावहता (Vorticity)ANSYS 19 R2

प्रस्तावना

कोरोनरी धमनी रोग (सीएडी) एक प्रगतिशील बीमारी है जो धमनी की सतहों पर सजीले कणों के एकत्रीकरण की विशेषता है। सीएडी की शुरूआत कोरोनरी धमनी में वसायुक्त पदार्थों के थक्के के जमाव से होती है, जिसके परिणामस्वरूप धमनी की सतहों पर पट्टिका की धारियां बनने और जमने लगती हैं। इन प्रारंभिक अवस्थाओं के दौरान, पट्टिकाएं प्रवाह की


गतिशीलता के महत्वपूर्ण परिणाम नहीं होते हैं, और प्रवाह सामान्य कोरोनरी धमनी में पटलीय प्रवाह से विचलित नहीं होता है [2-4]| समय बढ़ने के साथ, ये प्लेक्स लुमेन (चैनल जिसमें रक्त बहता है) में अंदर की तरफ बढ़ने लगते हैं, जिसके परिणामस्वरूप धमनी या धमनी का स्टेनोटिक लुमेन संकीर्ण हो जाता है, और इस प्रकार, प्रवाह के स्वरूप को बदलने में महत्वपूर्ण भूमिका निभाता है| यह स्पष्ट है कि एक बार एक स्टेनोसिस विकसित होने पर, रक्त प्रवाह में गड़बड़ी होती है और रक्त संचारण प्राचल स्टेनोसिस के बढ़ने में महत्वपूर्ण भूमिका निभाते हैं [5]|

साधारणतया रक्त संचार प्रणाली में रक्त प्रवाह, पटलीय होता है। पटलीय प्रवाह में, प्रत्येक कण किसी भी बिंदू पर स्थिर वेग के साथ पोत के माध्यम से एक चिकने पथ में समानांतर में घूम रहा है। उच्चतम वेग केंद्र में होने के कारण कुछ परिस्थितियों में जैसे कि उच्च वेग और निम्न रक्त की श्यानता (जैसा कि कम हेमटोक्रिट के कारण रक्ताल्पता), किसी प्रकार के अवरोध, और अन्य हृदय रोग, में पटलीय प्रवाह बाधित हो सकता है और अशांत हो सकता है। एक अशांत प्रवाह द्विधा जनक एवं अनियमित है, जिसमें किसी भी बिंद् पर एडी, भंवर, मिचरोब्रइटस और विशिष्ट ध्वनिक चिहन के साथ अस्थिरता है। प्रक्षुब्ध प्रवाह में प्लेटलेट्स और थ्रांबस विकास को सक्रिय करने वाले कतरनी बल बढ़ जाते हैं, जो लाल रक्त कोशिकाओं को न्कसान पहुंचा सकते हैं। प्रक्षुब्ध रक्त प्रवाह, एथेरोस्क्लेरोसिस की श्रूआत के कारण एंडोथेलियल अस्तर को प्रभावित करता है। सांद्र और कड़ा हो जाने में, रक्तसंचार प्रकरण (वेग, स्पर्शी प्रतिबल) में परिवर्तन का कारण बनता है। प्रक्षुब्धता की मात्रा का आकलन अत्यधिक वांछनीय है। स्थानीय रक्तसंचार प्रकरण (हेमोडायनामिक्स), एथेरोजेनेसिस और कोरोनरी एथेरोस्क्लेरोसिस रोग (सीएडी) की प्रगति में महत्वपूर्ण भूमिका को निभाता है। रक्त की अशांति के कारण एंडोथेलियल कोशिकीय फिल्म की सतह पर उत्पन्न सतह स्पर्शी प्रभाव म्ख्य जैविक परिवर्तन है, जबिक रक्त प्रवाह की स्थानीय दोलन प्रकृति कोरोनरी नली में संरचनात्मक परिवर्तन करती है। कोरोनरी धमनियों में, रक्त प्रवाह रेनॉल्ड्स संख्या दिसयों के जोड़े से कुछ सैकड़ों तक फैलती है और इसके बाद आमतौर पर सतह स्पर्शी प्रभाव की गणना का पता लगाते समय पटलीय माना जाता है। फिर भी, स्टेनोटिक स्थिति के तहत कोरोनरी धमनियों के माध्यम से स्पंदनतः रक्त बहता है जो पटलीय से प्रक्षुब्ध धारा की स्थिति में परिवर्तित हो सकता है [6-7]।


2. प्रणाली

इस अनुच्छेद में हम 2-डी आर्टरी मॉडल का निर्माण, सीमा की स्थितियों और उपयोग की जाने वाली संख्यात्मक तकनीक को प्रस्तुत कर रहे हैं, और कोरोनरी धमनियों के माध्यम से रक्त प्रवाह का अनुकरण कर रहे हैं।

कोरोनरी धमनी मॉडल: प्रतिकृति और ज्यामिति प्नर्निर्माण:

चित्र 1: आयामी ज्यामितीय मॉडल

चित्र 2: आयामीधमनी की ज्यामिति जिसमें कि 75% से अधिक स्टेनोसिस तीन स्थानों पर दिखाई गई है.

3. संचालक समीकरण

रक्त प्रवाह को नैवियर स्टॉक'स समीकरणों (Navier- Stokes' Equations) से संचालित किया गया है। संगणकीय अन्वेषणों (Computational Investigations) को सांत तत्व विधि (Finite Element Method) आधारित अभिकलनात्मक द्रव गतिकी (CFD= Computational Fluid Dynamics) प्रक्रिया सामग्री (Software) द्वारा कार्यान्वित किया गया है।

रक्त प्रवाह को अस्थिर, समतापी और असंगत माना जाता है। संकलित-औसत शासित समीकरणों को द्रव्यमान और संवेग संरक्षण लिए निम्नवत हल किया गया हैं:

सांतत्य समीकरण द्रव्यमान संरक्षण सिद्धांत पर आधारित है और साधारण रूप में इसे निम्न प्रकार लिख सकते हैं [8]

$$\frac{\partial U_i}{\partial x_i} = 0 \tag{1}$$

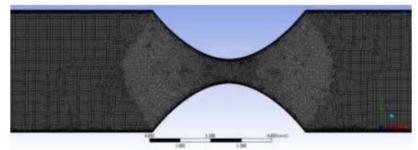
संवेग समीकरण संवेग संरक्षण सिद्धांत (न्यूटन के दूसरे कानून) पर आधारित है, और सामान्य रूप में निम्न प्रकार लिखा जा सकता है [8]

$$\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\nu \frac{\partial U_i}{\partial x_j} - \overline{u_i u_j} \right) - \frac{1}{\rho} \frac{\partial p}{\partial x_j}$$
 (2)

मध्यम से गंभीर धमनी अवरोध दूरस्थ (distal) और/या प्रक्षुब्ध प्रवाह विशेषताओं (turbulent flow Characteristics) के साथ अवरोधों के लिए अवस्था परिवर्तन कालिक (transitional) विक्षुब्ध (disturbed) प्रवाह क्षेत्रों का अत्यधिक उत्पादन कर सकते हैं। यदि यहाँ कोई अवस्था परिवर्तन कालिक प्रक्षुब्ध (transitional turbulence) है, तो उसको आंकने के लिए उपयोग किया जाने वाला प्रक्षुब्ध मॉडल (turbulence model) है, अवस्था परिवर्तन कालिक

स्पर्शी प्रतिबल परिवहन (transitional shear stress transport) (SST) $k-\omega$ model मॉडल ।k और ω के लिए परिवहन समीकरण हैं [8]

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_i} \left(\Gamma_k \frac{\partial k}{\partial x_j} \right) + G_k + Y_K \tag{3}$$


$$\frac{\partial}{\partial t}(\rho\omega) + \frac{\partial}{\partial x_i}(\rho\omega u_j) = \frac{\partial}{\partial x_j}\left(\Gamma_\omega \frac{\partial\omega}{\partial x_j}\right) + G_\omega + Y_\omega + D_\omega \tag{4}$$

जहां Γ प्रभावी विसरणशीलता (effective diffusivity) का प्रतिनिधित्व करता है, G संतित पद (generation term) है, Y विसरण पद (diffusion term) है और D पार-विसरण (cross-diffusion) को दर्शाता है।

3.1 सीमा की परिस्थितियां (Boundary Conditions):

स्पंदित परिमाण अंतर्वाह रूप रेखा (pulsatile volume inflow profile) को वेग अंतर्गम (inlet velocity) 0.15 मीटर/सेकंड की दर से, सीमा की परिस्थित की तरह से स्थापित किया गया है। दायों कोरोनरी धमनी के लिए कोरोनरी वेग को तरंग चरणबद्ध (waveform) प्रवाह की तरह से प्रयोग किया गया है। वर्तमान अनुकरण में बहिर्वाह (outlet) की स्थित को 15998.7 पास्कल (pascal) (120 mmhg) के बहिर्वाह दवाव तथा कोरोनरी धमनियों में 3% की अशांत तीव्रता (turbulence intensity) के साथ स्थापित किया गया है। अनुकरण करने के लिए धमनी की सतह स्थिर (stationary wall) एवं फिसलन वेग (slip velocity) की अनुपस्थित की स्थित का उपयोग किया गया है।

3.2 संगणकीय जाल (Computational Mesh):

चित्र 3: इस चित्र में धमनी में किसी एक अवरोध के लिए बनाई गई जाल (mesh) को प्रदर्शित किया गया है।

दायीं कोरोनरी धमनी के व्यास की भिन्नता रोगी के एंजियोग्राम में दर्ज की गई धमनी के एक खंड से प्राप्त की जाती है। धमनी अनुभाग की लंबाई है 55 मिमी (mm), और अधिकतम अवरोधों, जो लुमेन व्यास के 75% से अधिक रुकावट से मेल खाती है, अंतर्गम से क्रमशः 10 मिमी, 25 मिमी एवं 40 मिमी की दूरी पर स्थित है। अंतर्गम में धमनी का

बाहरी व्यास 4 मिमी पर किया गया है, और दीवार की मोटाई को इस आकलन में नहीं लिया गया है। धमनी के जाल को ansys 19(R?) [9] नामक अनुकरण प्रक्रिया सामग्री में बनाया गया है। इस पूरे जाल में 270583 गांठें (nodes) तथा 265093 तत्त्व (elements) हैं तथा धमनी एवं अवरोधों की सतहों पर परिष्कृत किया गया है। इसके अलावा, यह भी माना गया है कि धमनी की सतह (पट्टिका सहित) को एकल सामग्री के रूप में निदर्शित (modeling) मानते हुए अध्ययन किया गया है। प्रवाह अनुकार के लिए ज्यामिति को ANSYS FLUENT में आयातित किया गया है।

3.3 प्रवाह प्रतिरूपण

हमने ANSYS FLUENT में (नॉन-न्यूटोनियन) पावर-लॉ प्रतिरूपण का उपयोग करके रक्त के प्रवाह का अन्करण किया है।

यह प्रतिरूपण निम्न के द्वारा दिया गया है:[10]

$$T = -p\mathbf{1} + \mu(\dot{\gamma})[\nabla \mathbf{v} + (\nabla \mathbf{v} + (\nabla \mathbf{v})^T]$$
(5)

$$\mu(\dot{\gamma}) = m(\dot{\gamma})^{(n-1)} \tag{6}$$

जहाँ μ प्रतिरूपण की गतिशील श्यानता (dynamic viscosity) है और $\dot{\gamma}$ (shear rate) कतरनी दर है एवं निम्नवत परिभाषित की गई है[10]

$$\dot{\gamma} = \left[\frac{1}{2}tr\left[\nabla \mathbf{v} + (\nabla \mathbf{v})^T\right]^2\right]^{\frac{1}{2}} \tag{7}$$

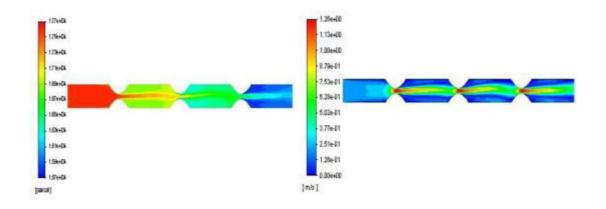
3.4 प्रतिरूपण मान्यकरण

सत्यापन के उद्देश्य के लिए, स्पंदनात्मक प्रवाह क्षेत्र डिस्टल को एक 75% से अधिक अवरोधित धमनी के लिए अवस्था परिवर्तनकालिक सीधी नलिका में धरातलीय बाधा का अनुकरण किया गया है। आदर्श बदली हुई ज्यामिति चित्र २ में दिखाई गई है तथा प्रयोगात्मक अंतर्गम तरंग रूप (web form) में उपयोगकर्ता परिभाषित फलन (user defined function, UDF) का उपयोग करके ANSYS FLUENT में उपयोग किया गया है। रक्त को एक असगंत न्यूटोनियन तरल के रूप में घनत्व $\rho = १०६०$ किया / H^3 (kg/m³) और गतिशील श्यानता $\mu = 0.00$ ३६०१४किलोग्राम / मीसे (kg/ms) के साथ प्रतिरूपित किया है [8]।

धमनी की दीवार पर असगंत तरल पदार्थ और गैर-फिसलन की शर्तों पर प्रयोग किया गया है, स्थानिक WSS (sptial wall shear stress) की गणना इस प्रकार की जाती है

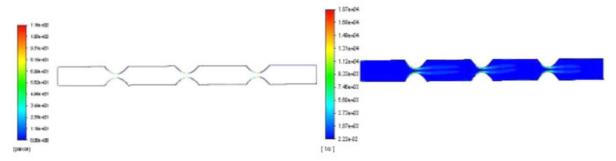
$$WSS = -\mu \frac{\partial u_t}{\partial n} \tag{8}$$

जहां μ गतिशील श्यानता है, μ_t दीवार वेग के लिए स्पर्शरेखीय है और n दीवार के लंबवत इकाई सिंदश है।

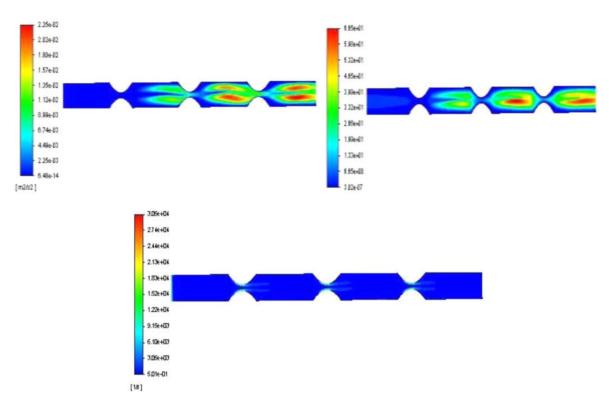

3.5 अभिबिंद्ता मानदंड

संख्यात्मक अनुसार पद्धित में पुनरावृत्ति प्रक्रिया को सम्मिलित किया है और इसलिए संरक्षित प्रवाह गुणों के लिए अभिसरण मानदंड निर्धारित किया गया है। अभिबिन्दुता मानदंड 10⁻⁶ पैमाने पर गति के लिए विश्लेषणात्मक समाधान और पुनरावृत्ति समाधान स्थापित किए गए हैं।

4. परिणाम


मात्रात्मक रूप से प्रक्षुब्ध की शुरूआत का आकलन करने के लिए, पटलीय (laminar) और प्रक्षुब्ध प्रतिरूपण के आधार पर अनुकरण किया जाता है गुणज (multiple) अवरोधों और रक्तसंचरण (hemodynamics) के लिए मापदंडों का तुलनात्मक निष्पादन किया गया है। वर्तमान पद्धति में, निम्नलिखित मान्यताओं को इष्टतम किया गया है[10]:

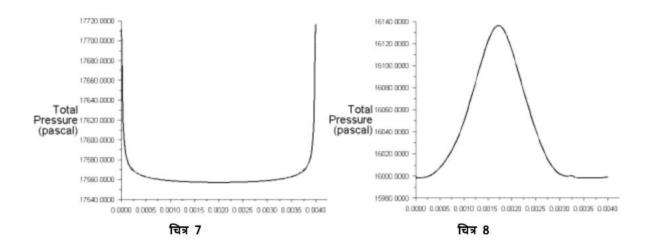
- (I) धमनी की दीवार गैर-लोचदार (non-elastic) है
- (II) हृदय चक्र (cardiac cycle) की उपेक्षा की गई है
- (III) रक्त श्यानता केवल स्पर्शी दर का फलन है।
 अस्थिर प्रवाह के लिए दबाव (सतह पर) और गति (आंतरिक तरल पदार्थ के लिए) के हृदय
 चक्र समोच्च को क्रमशः ज्यामिति में चित्र 4 में दिखाया गया है।



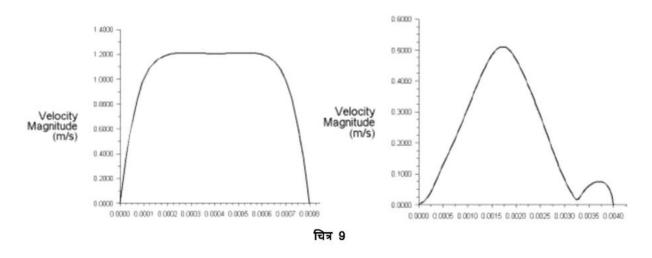
चित्र 4: संपूर्ण दबाव को बाईं ओर एवं वेग परिमाण को दाईं ओर प्रदर्शित किया गया है

सतह स्पर्शी प्रतिबल एवं रक्त के वेग से उत्पन्न भयावहता परिमाण को चित्र संख्या 5 से प्रदर्शित किया गया है।

चित्र 5: बाईं ओर दीवार कटनी तनाव एवं दाईं ओर भयावहता परिमाण को प्रदर्शित किया गया है प्रक्षुब्ध गतिज ऊर्जा, प्रक्षुब्ध रेनॉल्ड'स संख्या एवं प्रतिबल की दर को चित्र 6 में प्रदर्शित किया गया है।

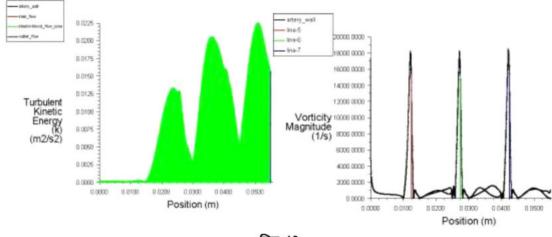

चित्र 6: ऊपर बाईं ओर अशांत गतिज ऊर्जा, दाईं ओर अशांत रेनॉल्ड'स संख्या एवं नीचे तनाव के दर को प्रदर्शित किया गया है

5. विचार-विमर्श


हमने दबाव, रक्त वेग, धमनी की सतह पर प्रतिबल की दर और रक्तप्रवाह में प्रक्षुब्धता के परिणामों का दाहिनी कोरोनरी धमनी के रोगी-व्युत्पन्न ज्यामिति से अध्ययन किया है तथा इसके प्रभाव का दस्तावेजीकरण किया है।

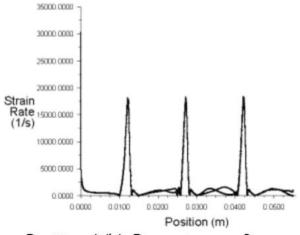
हमने देखा कि दबाव कि स्थिति अंतर्गम के समय सर्वाधिक होती है और निरंतर द्वितीय एवं तृतीय अवरोध के बाद घटती जाती है (चित्र 7)। प्रथम अवरोध से पहले सतहों की ओर दबाव अधिक और धमनी के मध्य में कम रहता है। किंतु प्रथम अवरोध के उपरांत दबाव

सतहों की ओर कम एवं मध्य में अधिक हो जाता है [13-14]। चित्र 7 और चित्र 8 में क्रमशः अंतर्गम एवं प्रथम अवरोध के पश्चात दबावों में अंतर दिखाया गया है।



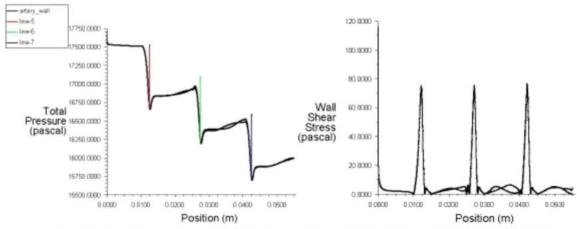
दबाव के इस अंतर के कारण रक्त प्रवाह की गित में भारी परिवर्तन देखने को मिलता है. रक्त प्रवाह की गित उच्चतम अवरोध की स्थिति में अपनी प्रारंभिक गित से 8 गुना तक अधिक हो जाता है [10-14]. चित्र 9 में अवरोध की उच्चतम विंडी पर तथा निर्गम की समय की रक्त वेग को क्रमशः आरेख द्वारा दिखाया गया है।

आरेख से स्पष्ट है कि रक्त की गित धमनी के मध्य में सर्वाधिक तथा धमनी की सतहों के पास निम्नतम है। रक्त की गित के इस प्रभाव का परिणाम यह होता है कि धमनी के मध्य में अवरोधों के समीप अत्यधिक प्रक्षुब्धता की स्थिति उत्पन्न हो जाती है जिसके कारण भारी मात्रा में प्रक्षुब्ध गितज ऊर्जा उत्पन्न होने लगती है। इस रक्त गित का एक


परिणाम यह भी सामने आता है कि अवरोधों के शिखर पर भयावहता (चित्र 5) उत्पन्न होने लगती है और दो अवरोधों के मध्य में आगे बढ़ने लगती है [5, 7-8]।

चित्र 10

चित्र 10 में प्रक्षुब्धता गतिज ऊर्जा एवं भयावहता की स्थिति को क्रमशः दर्शाया गया है। यहां भयावहता के आरेख में रेखा 5, 6, तथा 7 क्रमशः अवरोध प्रथम, द्वितीय एवं तृतीय के शिखर पर मान दिखा रहे है [7-9, 20]।


रक्त के अवरोधों के शिखर पर अत्यधिक गति, भयावहता एवं उच्च गतिज ऊर्जा के साथ साथ अवरोध शिखर पर प्रतिबल की दर भी बढ़ जाती है (चित्र 1)।

चित्र 11: अवरोधों के शिखर पर भयावहता परिमाण

सतहों के समीप दबाव में कमी (चित्र 4) के साथ सतहों स्पर्शी प्रतिबल में वृद्धि (चित्र 5) होती है। सतहों के समीप दबाव में कमी की साथ सतहों स्पर्शी प्रतिबल में वृद्धि होती है। प्रत्येक अवरोध शिखर की उपरांत दवाब में कमी आती जाती है तथा दो अवरोधों की मध्य में लगभग समान रूप में रहती है। वह दूसरी ओर दीवार कतरनी तनाव अवरोधों की शिखर पर

उच्चतम और मध्य में निम्नतम होता है। हांलांकि यह प्रतिबल बहुत अधिक नहीं है फिर भी अपने निम्नं मान की सापेक्ष 4 गुना तक बढ़ जाता है [17-19] (चित्र 12)।

चित्र 12: दवाब में लगातार कमी तथा दीवार कतरनी तनाव के दीवार पर बढ़ते प्रभाव के आलेख प्रदर्शन

6. निष्कर्ष

उपर्युक्त सभी अन्वेषणों से ज्ञात होता है कि दाई धमनी में गुणज अवरोधों की उपस्थित में दबाव में लगातार कमी आती जाती है तो वहीं दूसरी ओर रक्त गित में अत्यधिक तीव्रता देखने को मिलती है। यह तीव्रता इतनी है कि अवरोधों की मध्य में प्रक्षुब्धता गितज ऊर्जा को बहुत बढ़ा देती है तथा भयावहता की स्थिति को भी उत्पन्न करती है [20]। यदि हम इस बढ़ी हुई गितज ऊर्जा के परिमाण के स्तर को पता कर ले तो संभव है कि धमनी में अवरोध होने वाले दुष्परिणामों की व्याख्या को आभासी वास्तविकता के माध्यम से पता कर सकते हैं। अभी तक अवरोधों की सटीकता को आंशिक प्रवाह आरक्षित [(Fractional Flow Reserve (FFR)] है जो कि अत्यधिक महंगा होने के साथ-साथ कष्टदाई भी है [15]।

सन्दर्भ

- [1] Stefan, G. H., Heinen, D. A.F. Van, D.H., Wouter Huberts, Sanne W. de Boer, Frans N. van de Vosse, Tammo Delhaas, Jean-Paul P. M. de Vries, Journal of American Heart Association, 2017, 6 (12), 1-13, DOI: 10.1161/JAHA.117.007328, URL: http://www.trialregister.nl.
- [2] McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, CRC Press Published July 29, 2011, ISBN 9780340985014 - CAT# K18800.
- [3] Pedley T.J. New Perspectives in Biological Fluid Dynamics. In: Jaffrin M.Y., Caro C.G. (Eds) Biological Flows. Springer, Boston, MA, 1995.
- [4] John D. G. and Clayton, L., Designing for usability: key principles and what designers think. Commun, ACM, 28, 3 (March 1985), 300-311. DOI=http://dx.doi.org/10.1145/3166.3170, 1985.

- [5] Young D. F., Flow characteristics in models of arterial stenoses II. Unsteady flow, Journal of Biomechanics 6(5), 1973, 547-559.
- [6] Buradi, A, Mahalingam, A., Numerical Simulation of pulsatile blood fow in an idealized curved section of a human coronary artery, International Journal of Mechanical and Production Engineering 2016, 5 (8), 1-19.
- [7] Binter, C., Gotschy, A et. Al, turbulent tinetic energy assessed by multipoint 4-dimensional flow magnetic resonance imaging provides additional information relative to echocardiography for the determination of aortic stenosis severity, Valvular Heart Disease, Circ Cardiovasc Imaging. 2017, 10, 1-8, DOI: 10.1161/ CIRCIMAGING.116.005486.
- [8] Mahalingam, A., Gawandalkar U.U., Kini G., B. A., Araki T. I. N., Nicolaides, A, Laird J.R., Saba L.S. Numerical analysis of the effect of turbulence transitionon the hemodynamic parameters in human coronary arteries. Cardiovasc Diagn Ther 2016, 6(3), 208-220. doi: 10.21037/cdt.2016.03.08
- [9] ANSYS® AcademicResearch Mechanical, Release 19 (R2) student version, Help System, Coupled Field Analysis Guide, ANSYS, Inc.
- [10] Kallekar, L., Viswanath, C., Anand, M. Effect of wall flexibility on the deformation during, Flow in a Stenosed Coronary Artery, Fluids 2017, 2 (16), 1-10.
- [12] Huang J, Lyczkowski RW, Gidaspow ,D. Pulsatile flow in acoronary artery using multiphase kinetic theory. J Biomech, 2009, 42, 743-54.
- [13] Johnston B.M., Johnston P.R., Corney S., et al. Non-newtonian blood flow in human right coronary arteries:transient simulations, J Biomech 2006, 39, 1116-28.
- [14] Varghese S.S., Frankel S.H., Numerical modeling of pulsatile turbulent flow in stenotic vessels, J. Biomech Eng, 2003 125, 445-60.
- [15] Schelbert, H. R, FFR and coronary flow reserve friends or foes, Jacc: Cardio Vascular Imaging, 2012,. 5 (2), 203-206.
- [16] Gidaspow D., and Huang, J., Kinetic theory based model for blood flow and its viscosity, annals of Biomedical Engineering, 37 (8), 2009 1534–1545, DOI: 10.1007/s10439-009-9720-3.
- [17] Eshtehardi, P, et al. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease, J Am Heart Assoc.2012 vol. 1:e002543 doi: 10.1161/JAHA.112.002543.)
- [18] Michal S., M. et al. Helicity and vorticity of pulmonary arterial flow in patients with pulmonary hypertension: Quantitative analysis of flow formations, Am Heart Assoc, 2017, 6, e007010. DOI: 10.1161/JAHA.117.007010.)
- [19] Chakravarty, S. and Sen, S. Analysis of pulsatile bloodflow in constricted bifurcated arteries with vorticity-stream function approach, Journal of Medical Engineering & Technology, 32 (1), 10 – 22, 2008.
- [20] Ziegler M., Lantz, J., Ebbers, T., and Dyverfeldt P,Assessment of turbulent flow effects on the Vessel Wall using four-dimensional flow MRI, Magnetic Resonance in Medicine, 2016, 1-10.

मोसफेट निदर्शन पर एक समीक्षा पत्र

सैयद दावर मेहदी रिज़वी

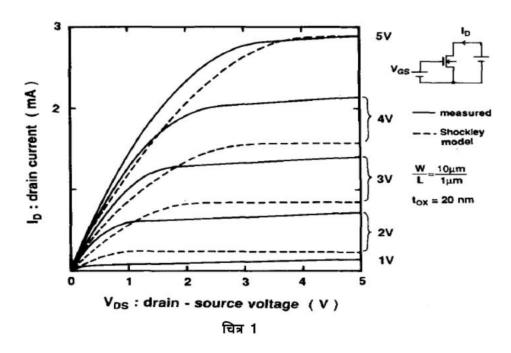
इलेक्ट्रॉनिक्स और संचार इंजीनियरिंग विभाग एस. आर. एम. एस. अभियांत्रिकी एव प्रौद्योगिकी महाविद्यालय, बरेली ई मेल: dawarmehdi9@gmail.com

सार: यह लेख एक समीक्षा पत्र है और उस शोध के बारे में वर्णन करता है जो मोसफेट (MOSFET) प्रौद्योगिकी के संबंध में है। हम जानते हैं कि आज के लघ्करण के परिदृश्य में जिस पर सबसे अधिक शोध किया गया है मोसफेट (MOSFET) सबसे अधिक रोचक युक्ति है। मोसफेट (MOSFET) (या किसी भी उपकरण) के निर्माण में दो चरणों की आवश्यकता होती है, जो अपेक्षित स्तर पर युक्ति को अपेक्षित रूप से पारित करने में सक्षम होने के लिए औद्योगिक स्तर पर आवश्यक हैं, और वे हैं 1. डिजाइन बनाना और 2. निर्माण। युक्ति के प्रदर्शन की जांच करने के लिए और युक्ति के निदर्शन (मॉडलिंग) के संबंध में सटीक विश्लेषण करने की आवश्यकता है। मॉडल के आधार पर बह्त सारे डिजाइन संभव हैं और इन सभी मामलों की त्लना कई महत्वपूर्ण मापदंडों के आधार पर की जाती है (जो बाद में युक्ति के प्रदर्शन को निर्धारित करने में महत्वपूर्ण होते हैं)। इस तरह की तुलना आम-तौर पर बहुत कठिन होती है और इसे सफलता पूर्वक करने के लिए बड़ी मात्रा में आंकड़ों की आवश्यकता होती है। निर्माण के लिए डिजाइन देने से पहले (जो बह्त महंगा है और परिष्कृत करता है) डिजाइनरों को सबसे पहले डिजाइन की नकल करने और संभावित त्रृटियों के लिए डिजाइनों की जांच करने की आवश्यकता है। मिडीसी आई एस ई [1] जैसे अनुकरणीय सॉफ़्टवेयर के माध्यम से डिज़ाइन की इष्टतमता पर काम करने की तुलना में त्रृटियों की छानबीन करने और डिजाइनरों को ठीक करने के बाद होती है। इस तरह के मॉडलों को भौतिकी आधारित मॉडल कहा जाता है। इन मॉडलों का मुख्य लाभ यह है कि वास्तव में युक्ति (डिवाइस) को तैयार किए बिना FEA (परिमित तत्व विश्लेषण) संभव है और अधिकतर युक्ति के अनुकार परिणाम के साथ मेल खाते हैं। हालांकि, इस तरह की विधि से जुड़ा नुकसान यह है कि यह बह्त समय लेता है। दूसरी विधि "व्यवहार मॉडल" है यह मॉडल शोधकर्ताओं दवारा व्यापक रूप से उपयोग किया जाता है क्योंकि यह

सटीकता और अनुकार (सिमुलेशन) समय के बीच व्यापार का एक अच्छा डिग्री प्रदान करता है। ज्यादातर युक्ति निर्माता पिस्पाईस (PSPICE) और सेबर (SABER) जैसे अनुकारक (सिमुलेटर) के लिए अपनी युक्ति का व्यवहार मॉडल प्रदान करते हैं। इस पद्धिति से जुड़ा नुकसान यह है कि यह बड़े पैमाने पर आंकड़े प्रसंस्करण के लिए उपयुक्त नहीं है, हालांकि इसकी अनुकार गित भौतिकी-आधारित मॉडल से बहुत अधिक है।

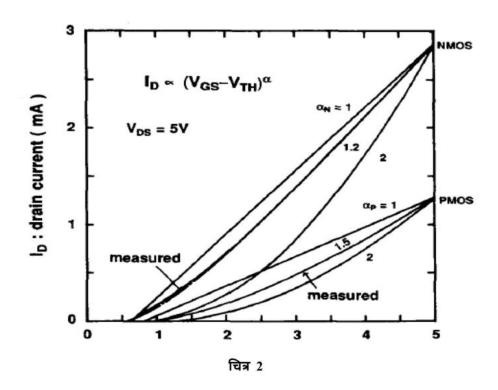
कुंजी शब्द : मोसफेट, मोसफेट निदर्शन , मोसफेट निर्माण, प्राचल सुधार, मोसफेट की विशेषताओं में सुधार

प्रस्तावना

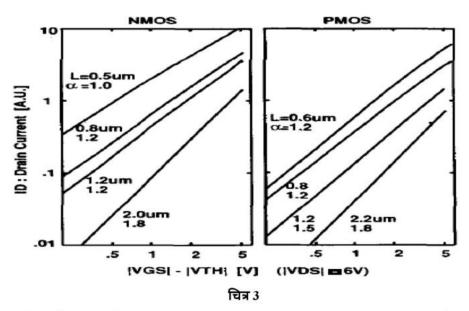

"नया मॉडल क्यों?" अब सवाल उठता है कि नया मॉडल क्यों है, इसका उत्तर इस प्रकार है-मोसफेट के लिए पारंपरिक रूप से उपलब्ध मॉडल (पाठय पुस्तकों में उपलब्ध है) बहुत सटीक नहीं है और जब युक्ति (डिवाइस) का प्रदर्शन व्यावहारिक पहलुओं की तुलना मौजूदा तरीकों द्वारा दिए गए परिणामों से की जाती है, विशेष रूप से मॉडलिंग के उप-माइक्रोन क्षेत्र में महत्वपूर्ण विचलन दर्ज किए गए हैं।

सैद्धांतिक मॉडल मोसफेट के अध्ययन के लिए पारंपरिक रूप से प्राप्त जूदा मॉडल को सोरले के मोसफेट मॉडल के रूप में कहा जाता है, इसका उपयोग मोसफेट सर्किट के विश्लेषणात्मक रूप से किया जाता है। चूँकि मॉडल सरल है इसलिए कई सूत्र इससे प्राप्त हुए हैं जो वीएलएसआई के प्रारंभिक डिजाइन और सीएडी कार्यक्रमों में बहुत बार उपयोग किए जाते हैं। हालांकि शॉक्ले का मॉडल मुख्य रूप से लघुचैनल मोसफेट की वोल्टेज वर्तमान विशेषताओं को पुन: पेश नहीं कर सकता है क्योंकि इसमें वाहकों के वेग संतृप्ति प्रभाव शामिल नहीं हैं जो उपसूक्ष्म मीटर रंज में प्रख्यात हो जाते हैं। शॉक्ली के मॉडल के लिए बहुत सटीक परिणाम नहीं मिलते हैं जब उपमाइक्रोन रंज में लघुचैनल मोसफेट पर लागू किया गया था। हम पहले से ही जानते हैं कि शॉक्ले के मॉडल में ड्रेनकरंट ID के रूप में ट्यक्त की गई है।

परिभाषा	क्षेत्रकानाम	शर्त	
$I_D = 0$	कटऑफ	$V_{GS} \le V_{TH}$	
$K [(V_{GS}-V_{TH})^2]V_{DS} - 0.5(V_{DS})^2$	लीनियर	$V_{\rm DS}\!<\!\!V_{\rm DS(sat)}$	
$0.5 \text{K} [(V_{GS} - V_{TH})^2]$	सेचुरेशन	$V_{DS}\!>=\!V_{DS(sat)}$	


जहाँ V_{DS} (sat) = V_{GS} - V_{TH} इसे ड्रेन टू सोर्स सेचुरेशन वोल्टेज कहा जाता है और V_{TH} को डिवाइस का थ्रेशोल्ड वोल्टेज कहा जाता है। K ड्राइव क्षमता कारक = μCox (W/Leff) है। जहां μ गितिशीलता को दर्शाता है, वहीं कॉक्स MOS कैप के प्रति यूनिट क्षेत्र पर कैपेसिटेंस को दर्शाता है। (W/L) डिवाइस की लंबाई के अनुपात की चौड़ाई है।

चित्र 1 शौकली मॉडल और मापा V_{DS} V_{S} I_{D} , 1- पिको मीटर n-चैनल मोसफेट के लिए विशेषताओं को दिखाता है। यह स्पष्ट है कि शॉकली मॉडल हाल के मोसफेट की स्थिर विशेषताओं को पुन: पेश करने में विफल है। दो मुख्य विसंगतियां हैं। एक यह है कि ड्रेन टू सोर्स सेचुरेशन वोल्टेज V_{DS} अनुमानित मूल्य से अलग है। दूसरा यह है कि संतृप्ति क्षेत्र (पैंटोड क्षेत्र) में मौजूद ड्रेन करंट गेट- सोर्स वोल्टेज पर शॉक्ले के वर्ग-विधि निर्भरता को नहीं दिखाता है। इन दो विसंगतियों, अर्थात, ड्रेन टू सोर्स सेचुरेशन वोल्टेज की शिफ्ट और संतृप्ति क्षेत्र I-V घटता में विसंगतियां, दोनों शॉर्ट- चैनल मोसफेट में देखे गए वेग संतृप्ति प्रभाव से आते हैं।



चित्र 2 में, संतृप्ति क्षेत्र में विसंगति को और अधिक स्पष्ट रूप से दिखाया गया है। यह आंकड़ा V_{DS} - I_D , संतृप्ति क्षेत्र में विशेषताओं को दर्शाता है। जैसा कि चित्र 2 से देखा गया है, ड्रेनकरंट I, (VGS-VTH) के समानुपाती है। वह शॉकली मॉडल का दावा है किa=2 है, जबिक एक एन-चैनल मोसफेट के लिए लगभग a=1pm गेट लंबाई के लिए मापा मूल्य 1.2pm है एकपी-चैनल मोसफेट

[5] के लिए 1.5pm है एक एन-चैनल । 1pm -पी मोसफेट को 5 वोल्ट आपूर्ति के साथ उपयोग के लिए डिज़ाइन किया गया है।

चित्र 3 विभिन्न मोसफेट के लिए 2 से अपराहन से 0.5 बजे के बीच गेट की लंबाई के लिए आई डी बनाम नाली से स्रोत संतृष्टित वोल्टेज का लॉग-लॉग प्लॉट दिखाता है। उन्हें विभिन्न प्रक्रिया प्रौद्योगिकियों के साथ बनाया जाता है, तािक ऑक्साइड की मोटाई प्रत्येक के लिए अलग हो। उदाहरण के लिए, 2- मोसफेट का आंकड़ा 2-pm प्रक्रिया से लिया जाता है, यह कई साल पहले बनाया गया था, जब 2-pm डिज़ाइन नियम सबसे उन्नत प्रक्रिया थी। यहाँ, मोसफेट की 2.2-पी एम गेट की लंबाई से 0.8-pm गेट की लंबाई लगभग 5-V आपूर्ति वोल्टेज के तहत उपयोग के लिए इष्टतम की गई थी और मोसफेट की 0.5-0.6-pm गेट लंबाई लगभग 3.3-V-VDD के तहत उपयोग के लिए इष्टतम थी।

अन्य मॉडल में चार्ज-शीट मॉडल शामिल होते हैं जो उलटा परत को शून्य मोटाई के एक समतल विमान में संपीड़ित करते हैं। यह इस पत्र का उद्देश्य है कि यह देखने के लिए एक चार्ज शीट मॉडल का परीक्षण किया जाए कि क्या यह अनुमान बहुत गंभीर है। इस विशेष मॉडल में प्रसार शामिल है जो कि सब थ्रेल्ड और संतृष्ति क्षेत्रों में महत्वपूर्ण होने की उम्मीद है।

2. निष्कर्ष

मोसफेट सिद्धांत नई जांच से गुजर रहा है। यह नया हित लघु चैनल उपकरणों के भाग के कारण है जो दो आयामी प्रभावों पर जोर देते हैं और, भाग में, कम वोल्टेज संचालन के लिए जो गेट बायसेस के पास-श्रेशोल्ड शासन पर जोर देते हैं। जबिक मोसफेट सिद्धांत पर पूर्ण पैमाने पर संख्यात्मक चुनौतियाँ दी गई हैं [1-3], अंतर्ज्ञान और कुशल संगणना सरल मॉडल की स्थापना पर निर्भर करते हैं।

संदर्भ

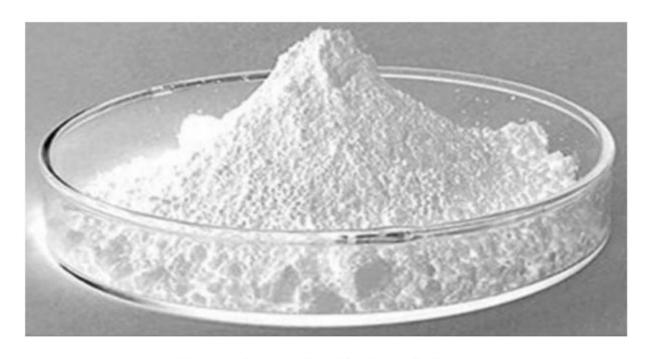
- T. Sakurai, Optimization of CMOS arbiter and synchronizer with sub micrometer MOSFET's, IEEE J. Solid-state Circuits, vol. 23, no. 4, pp. 901-906, Aug. 1988.
- 2. R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, 2nd ed.
- K. K. Ng and W. T. Lynch, The impact of intrinsic series resistance on MOSFET scaling, IEEE Trans. Electron Devices, vol. ED-34, pp. 503-511, Mar. 1987.
- 4. W. Shockley, A unipolar field effect transistor, Proc. IRE, vol
- 5. IEEE Journal of SOLID-STATE CIRCUITS. VOL. 25, NO. 2, APRIL 1990
- Microelectronic Circuits by Sedra and Smith published by Oxford University Press.

जिंक ऑक्साइड के नैनोकणों का संश्लेषण और अभिलक्षणन

डॉ. मुकेश उपाध्याय

भौतिकी विभाग पूर्वोत्तर क्षेत्रीय विज्ञान और प्रौद्योगिकी संस्थान निर्ज्ली, अरुणाचल प्रदेश

सार: इस शोधपत्र में, जिंक ऑक्साइड (ZnO) नैनोकणों का संश्लेषण और अभिलक्षणन किया गया है। जिंक ऑक्साइड नैनोकणों को अवक्षेपण के माध्यम से संश्लेषित किया गया था जिसमें पूर्ववर्ती के रूप में जिंक नाइट्रेट, अवक्षेपण कर्मक के रूप में सोडियम कार्बोनेट (Na₂Co₃) और आसुत जल को विलायक के रूप में लिया गया है। इसमें अनीलन ताप 120 °C लिया गया है। एक्स-किरण विवर्तन (XRD) से संश्लेषित जिंक ऑक्साइड (ZnO) नैनोकणों के क्रिस्टलीय आकार को निर्धारित किया गया। जिंक ऑक्साइड के फोनोन स्पेक्ट्रम का रामन स्पेक्ट्रमिकी से अध्ययन किया गया। रामन स्पेक्ट्रा से ज्ञात होता है कि इन नैनोकणों के फोनोन की आवृत्ति शुरूआत में ऊंची था, जो क्रिस्टलीय आकार के साथ कम हो गई, जबिक उसकी रेखा की चौड़ाई बढ़ती जाती है।

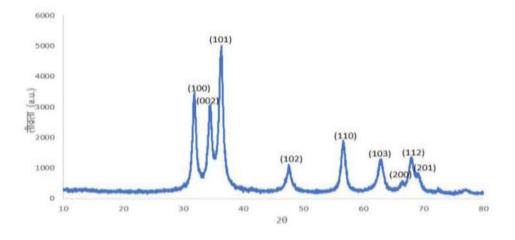

कुंजी शब्दः नैनोकण, विशिष्ट अवशोषण, रमन स्पेक्ट्रमिकी, क्रिस्टलीय आकार आदि

प्रस्तावना

जिंक ऑक्साइड एक रासायनिक यौगिक है, जो प्राकृतिक रूप में जिंकाइट नामक खनिज में पाया जाता है। यह आमतौर पर एक सफेद क्रिस्टलीय पाउडर के रूप में दिखाई देता है, इसलिए, इसका उपयोग जिंक श्वेत नामक सफेद वर्णक के रूप में जाता है। यह किसी भी विलायक जैसे पानी, इथेनॉल, एसीटोन आदि में लगभग अविलेय है। जिंक ऑक्साइड यदि सतह के साथ सीधे संपर्क में है तो धीरे-धीरे दोनों अम्लीय (जैसे ट्यूमर कोशिकाओं और ट्यूमर सूक्ष्म वातावरण में) और प्रबल क्षारीय स्थितियों को भंग कर सकता है [1,2]। जिंक ऑक्साइड II-VI समूह की एक n-प्ररूपी अर्धचालक सामग्री है, जिसमें 3.2 इलेक्ट्रॉन वोल्ट के आसपास की बड़ी ऊर्जा अंतराल [3,4], कक्ष ताप पर एक उच्च उत्तेजना ऊर्जा (60 meV), उच्च परावैद्युतांक और नियंत्रित विद्युत चालकता है [5,6]।

2. जिंक ऑक्साइड नैनोकणों का संश्लेषण

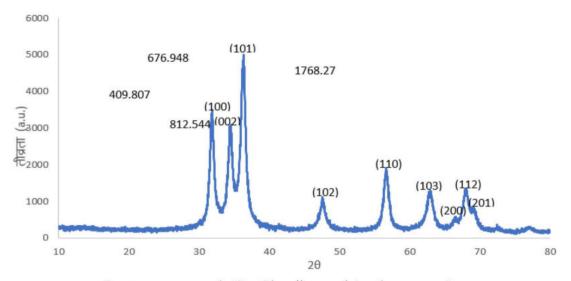
जिंक ऑक्साइड नैनोकणों को पूर्ववर्ती के रूप में जिंक नाइट्रेट हेक्साहाइड्रेट [Zn (NO₃) 2.6H₂O] और सोडियम कार्बोनेट [Na₂CO₃] का उपयोग करके अवक्षेपण द्वारा तैयार किया गया। 200 मिलीलीटर आसुत जल में 30 ग्राम जिंक नाइट्रेट हेक्साहाइड्रेट को विलीन करके जिंक नाइट्रेट का 0.1 M विलयन तैयार किया गया और 250 मिलीलीटर आसुत जल में 10 ग्राम सोडियम कार्बोनेट घोलकर सोडियम कार्बोनेट का 0.12 M विलयन तैयार किया गया। उसके बाद सोडियम कार्बोनेट के 0.12 M विलयन को ब्यूरेट में भरकर बूंद-बूंद से जिंक नाइट्रेट के 0.1 M विलयन में, चुंबकीय विलोडक का प्रयोग करते हुए 1 घंटे तक तेज़ी से विलोडित किया गया, जिससे श्वेत अवक्षेप विलयन का निर्माण होता है। अभिक्रिया पूरा होने के बाद भी श्वेत अवक्षेप विलयन को 3 घंटे तक विलोडित किया गया, फिर सफेद अवक्षेप को निस्यंदन द्वारा एकत्र किया गया और अनिभिक्रियित विलेय अभिक्रियकों को हटाने के लिए आसुत जल से दो बार धोया गया। यदि कार्बनिक अशुद्धियों पाई जाएं तो उन्हें हटाने के लिए ठोस श्वेत द्रव्यमान को इथेनॉल से तीन बार धोकर अवन में 5 घंटे के लिए 60° C पर सुखाया गया। जिंक ऑक्साइड पाउडर के क्रिस्टलता को सुधारने के लिए अंत में 120° C पर ठोस श्वेत द्रव्यमान के अनीलन से जिंक ऑक्साइड नैनोकण प्राप्त हुए [7,8,9]।


चित्र 1: अवक्षेपण द्वारा तैयार जिंक ऑक्साइड के नैनोकण

3. जिंक ऑक्साइड के नैनोकणों का अभिलक्षणन

पदार्थ विज्ञान में विभिन्न प्रकार की तकनीकों का उपयोग करके अभिलक्षणन किया जा सकता है। सामान्य तकनीकों में पाउडर एक्स-किरण विवर्तन (XRD) और रामन स्पेक्ट्रमिकी हैं [10,11,12]।

4. एक्स-किरण विवर्तन (XRD)


विभिन्न पदार्थों के क्रिस्टलीय प्रावस्थाओं की पहचान करने के लिए एक्स-िकरण विवर्तन सबसे महत्वपूर्ण तकनीक है। एक्स-िकरण विवर्तन ठोस पदार्थ के तीन आयामी क्रिस्टलीय संरचना के प्रदीपन के लिए एक बेहतर तकनीक हैं। एक्स-िकरण विवर्तन प्रतिरूप को 10° से 80° तक, Cu Ka ($\lambda=1.542$ Å) के साथ 40 के वी के त्वरक वोल्टता में 3° C प्रति मिनट की क्रमवीक्षण दर के साथ डेटा एकत्र किया गया। चित्र 1 में जिंक ऑक्साइड नैनोकणों के एक्स-िकरण विवर्तन प्रतिरूप देख सकते है, जिसको 120° C पर अनीलन से संश्लेषित किया गया है, जहां विभिन्न तीव्रता पर विभिन्न शिखर प्राप्त की गई है। एक्स-िकरण विवर्तन शिखर (100), (002), (101), (102), (110), (103), (200), (112) और (201) पर विवर्तनी क्रमशः कोण $20=31.802^{\circ}$, 34.332° , 36.206° , 47.46° , 56.542° , 62.8° , 66.5° , 67.87° और 68.96° पर पाई जा सकती हैं, जो कि जिंक ऑक्साइड के षट्कोणीय प्रावस्था के शुद्ध वुर्ट्जाइट संरचना (जे सी पी डी एस संख्या 79.0208 से) के गठन को इंगित करता है। परिणाम यह संकेत करता है कि जिंक ऑक्साइड नैनोकणों का प्रतिदर्श शुद्ध प्रावस्था में है और क्रिस्टलीय हैं, जैसा कि चित्र 2 में दिखाया गया है।

चित्र 2: संश्लेषित जिंक ऑक्साइड नैनोकणों के एक्स-किरण विवर्तन प्रतिरूप

5. रमन स्पेक्ट्रा

रामन स्पेक्ट्रमिकी एक गैर-विनाशकारी रासायनिक विश्लेषण तकनीक है, जो रासायनिक संरचना, बहुरूपी और प्रावस्था, आण्विक अन्योन्यक्रिया और क्रिस्टलीयता के बारे में विस्तृत जानकारी प्रदान करती है। यह एक पदार्थ के भीतर रासायनिक आबंध के साथ प्रकाश की अन्योन्यक्रिया पर आधारित है। यह तकनीक एक प्रतिदर्श का विकिरण करता है, जो एक अनंतस्क्ष्म मात्रा में रामन की बिखरी हुई रोशनी का उत्पादन करने के लिए प्रकाश स्रोत के रूप में एक लेसर का उपयोग करता है, जिसे रामन स्पेक्ट्रम के रूप में संसूचित किया जाता है और इसका उपयोग करके किसी पदार्थ की पहचान की जा सकती है।

चित्र 3: कक्ष ताप पर संश्लेषित जिंक ऑक्साइड नैनोकणों का रामन स्पेक्ट्रा

चित्र (3) से, रामन विधा विस्थापन 409.807 से मी -1, 676.948 से मी -1, 812.544 से मी -1, 1768.27 से मी 1 और कुछ कमजोर तीव्रता वाले विधा के साथ देखे गए। ऑप्टिकल फोनोन परिरोध के कारण, जिंक ऑक्साइड नैनोकणों के रामन विधा में निचले तरंग संख्या की ओर विस्थापन पाए गए।

निष्कर्ष

- a. जिंक ऑक्साइड नैनोकणों को 120°C ताप पर जिंक नाइट्रेट हेक्साहाइड्रेट और सोडियम कार्बोनेट से अवक्षेपण द्वारा तैयार किया गया।
- b. एक्स-किरण विवर्तन और रामन स्पेक्ट्रमिकी का उपयोग संश्लेषित नैनोकणों के अभिलक्षणन के लिए किया गया।

- c. एक्स-किरण विवर्तन परिणाम जिंक ऑक्साइड नैनोकणों में वर्ट्ज़ाइट संरचना की पुष्टि करता है और उनका आकार 12.23 नैनोमीटर का पाया गया।
- d. रामन स्पेक्ट्रा से पता चलता है कि नैनोकणों द्वारा ऑप्टिकल फोनोन परिरोध के कारण निचले तरंग संख्या की ओर विस्थापित होता है।

संदर्भ

- B. C. Yadav, Richa Srivastava and Alok Kumar. Characterization of ZnO Nanomaterial Synthesized by different methods. International Journal of Nanotechnology and Applications, 2007, volume1.
- 2. Jayanta Kumar Behera. Synthesis and Characterization of Nano-particles. M. Tech Thesis, NITRourkela.
- Qing Wan, Q. H. Li, Y. J. Chen, Ta-Hung Wang, X. L. He, J. P. Li, C. L. Lin, Applied Physics Letters 84 (2004)
- Ashar, A.; Iqbal, M.; Bhatti, I.A.; Ahmad, M.Z.; Qureshi, K.; Nisar, J.; Bukhari, I.H. Synthesis, characterization and photocatalytic activity of ZnO flower and pseudo-sphere: Nonylphenol ethoxylate degradation under UV and solar irradiation. J. Alloy. Compd. 2016, 678 3654-3656.
- Brayner, R.; Dahoumane, S.A.; Yéprémian, C.; Djediat, C.; Meyer, M.; Couté, A.; Fiévet, F. ZnO nanoparticles: Synthesis, characterization, and ecotoxicological studies.
- Zhang, R.; Zhang, H.; Tu, C.; Hu, X.; Li, L.; Luo, Y.; Christie, P. Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ. Sci. Pollute. Res. 2015, 22, 11109–11117.
- Husen A, Siddiqi KS. Photosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett. 2014; 9:229.
- Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nano Res Lett. 2016; 11: 98.
- V. Russo1, M. Ghidelli1, P. Gondoni1, C. S. Casari1,2, A. Li Bassi1,2, Dipartimento di Energia and NEMAS – Center for Nano Engineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano, Italy 2Center for Nano Science and Technology @PoliMI, Istituto Italiano di Tecnologia, Via Pascoli 70/3 I-20133 Milano, Italy.
- D. Gültekin*, H. Akbulut Sakarya University, Metallurgical and Materials Engineering Dept., 54187, Sakarya, Turkey.
- Taziwa R, Ntozakhe L, Meyer E (2017) Structural, Morphological and Raman Scattering Studies of Carbon Doped ZnO Nanoparticles Fabricated by PSP Technique. J Nano-sci Nano-technol Res Vol.1: No.1: 3.
- Synthesis and characterization of ZnO nanoparticles Volume 30, Number 4, Avnish Kumar Arora, Sarita Devi, Vivek Sheel Jaswal, Joginder Singh, Mayank Kinger, Vishnu Dev Gupta, Department of chemistry, Maharishi Markendeshwer University, Mullana -133207, (Haryana), India.

मोबाइल एड-हॉक नेटवर्क में विभिन्न मार्गन प्रोटोकॉल की स्वीकृति

क्मारी हेमलता

संगणक अभियांत्रिकी विभाग, एस. आर. एम. एस. अभियांत्रिकी एवं एस. आर. एम. एस. अभियांत्रिकी एवं प्रौद्योगिकी महाविद्यालय, बरेली

ई मेल: hemagangwar03@gmail.com

शाहजहां अली

संगणक अभियांत्रिकी विभाग, प्रौद्योगिकी महाविद्यालय, बरेली

ई मेल: shahjahan.srms@gmail.com

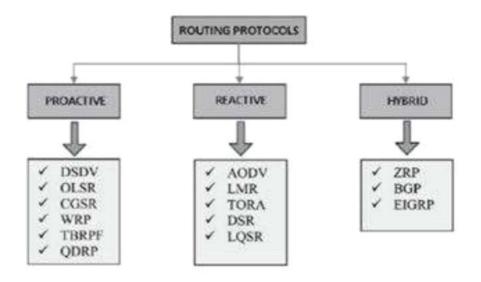
सार: इस सर्वेक्षण पत्र में हम वर्तमान मार्गन प्रोटोकॉल की स्विधा, प्रतिबंधनों और स्वीकृति पर ध्यान केंद्रित करेंगे। मोबाइल तदर्थ नेटवर्क नोड्स का एक सम्च्चय है जिसका कोई मुख्य माध्यम और अभिगमन बिंद् नहीं है। यह स्व-संगठन और आत्म-विन्यास के लिए उपकरण है। मनेट्स (MANETs) नेटवर्किंग के क्षेत्र हैं जो बहुत रचनात्मक और प्रेरक हैं। कुछ वर्षों में मनेट्स (MANETs) पर बह्त अध्ययन किया गया है। प्रतिबंधित संसाधनों के कारण, अभी भी कुछ बाधाएं और समस्याएं हैं। इन प्रतिबंधित संसाधनों के कारण, अभी भी मनेट्स (MANETS) में एक कुशल और चतुर मार्गन रणनीति तैयार करना मुश्किल है। तदर्थ मोबाइल नेटवर्क अत्यधिक बह्मुखी और मजबूत है। हम किसी भी समय कहीं भी इस तरह का नेटवर्क आसानी से स्थापित कर सकते हैं, लेकिन प्राथमिक मुद्दा जल्दी से सांस्थिकी बदल रहा है। इस प्रकार के मुद्दों को हल करने के लिए बह्त सारे मार्गन प्रोटोकॉल बनाए गए है।

कुंजी शब्द : मोबाइल तदर्थ नेटवर्क; रूटिंग प्रोटोकॉल का प्रदर्शन विश्लेषण; सांस्थिकी परिवर्तन; स्व विन्यास; स्व संगठन

प्रस्तावना

ब्लूटूथ जैसे वायरलेस युक्ति या 802.11 मानक मोबाइल युक्तियों को वायरलेस [1] के माध्यम से बिना किसी केंद्रीकृत संरचना के लचीले ढंग से जोड़कर मोबाइल तदर्थ नेटवर्क मनेटस (MANET) स्थापित करने की अनुमति देते हैं। मेनेटस (MANETs) पारंपरिक नेटवर्क पर कई लाभ देते हैं, जिसमें कम बुनियादी ढांचा व्यय, आसान सेट-अप और सहनशील दोष, जैसे कि व्यक्तिगत मार्गन का संचालन किया जाता है। यह मल्टी-होपिंग आगे के पैकेट [2]

के लिए अन्य माध्यम नेटवर्क नोड्स का उपयोग करके बाधाओं के अवसर को कम करता है, लेकिन तार विकल्पों की त्लना में म्ख्य मनेटस (MANET) अवधारणा अधिक प्रचलित है। एड-हॉक नेटवर्क की विश्वसनीयता को प्रभावित करने और विभिन्न स्थितियों के लिए उनकी व्यवहार्यता को सीमित करने में कई समस्याएं हैं; मनेटस (MANET) के भीतर केंद्रीकृत संरचना की अनुपस्थिति में प्रत्येक व्यक्तिगत नोड में एक राउटर के रूप में व्यवहार करना और पैकेट मार्गन कर्तव्यों को पूरा करने के लिए जवाबदेह होना शामिल है; यह एक या अधिक लोकप्रिय मनेटस (MANET) मार्गन प्रोटोकॉल [3] का उपयोग करके हासिल किया जाता है। मार्गन कर्तव्यों में मेमोरी और संगणकीय क्षमता की आवश्यकता होती है, लेकिन मोबाइल उपकरणों के भौतिक आकार और वजन की बाधाएं उनकी गतिशीलता के लिए महत्वपूर्ण हैं, उपलब्ध स्मृति और संगणक संसाधनों को कम करने और बैटरी की शक्ति को सीमित करने के लिए। सटीक नोडिंग जानकारी रखने के लिए अधिक नोड्स वाले मनेटस (MANET) को अधिक प्रक्रमण शक्ति, स्मृति और बैंड विस्तार की आवश्यकता होती है; यह नेटवर्क में उपरि यातायात लाता है क्योंकि नोडिंग मार्गन आंकड़ो को प्रसारित करता है, जो बदले में अधिक बैटरी शक्ति का उपयोग करता है। यह शोध पत्र निम्नलिखित तरीके से संरचित है। अनुच्छेद 2 मनेटस (MANET) में विभिन्न मार्ग प्रोटोकॉल का एक विस्तृत अध्ययन देता है। अनुच्छेद 3 विभिन्न मार्गन प्रोटोकॉल की विशेषताएं, फायदे, नुकसान और सीमाएं प्रदान करता है। अन्च्छेद 4 मनेटस (MANET) में विभिन्न मार्गन प्रोटोकॉल का तुलनात्मक विश्लेषण प्रदान करता है। अनुच्छेद 5 में शोध पत्र और अन्वेषण का निष्कर्ष है।


2. मनेट में मार्गन

कई नए प्रोटोकॉल जिनमें इसके कई लाभ और नुकसान शामिल हैं, आज सुझाए जा रहे हैं। ध्यान रखने की एक बात यह है कि बेतार नेटवर्क के तार नेटवर्क में मार्गन इसके कई कारकों के कारण अलग है जैसे: गतिशीलता, मार्ग अद्यतन, सीमित सीमा तक संचरण। इसी तरह, हम यह निष्कर्ष निकाल सकते हैं कि बेतार नेटवर्क, प्रदर्शन तार नेटवर्क प्रदर्शन से अलग है।उदाहरण के लिए, यह कहा जा सकता है कि तार नेटवर्क नोड्स मोबाइल नहीं हैं, इसलिए उनका ऊर्जा उपयोग बेतार से कम होगा। इसलिए इसे मनेट (MANET) के कठिन मुद्दों में से एक माना जा सकता है। संक्षेप में, मार्गन को तीन मुख्य वर्गीकरणों में विभाजित किया गया है:

1. सक्रिय

2. प्रतिक्रियाशील

संकर

चित्र 1: मार्गन प्रोटोकॉल के प्रकार

2.1 संक्रिया मार्गन प्रोटोकॉल

यह तालिका द्वारा निर्देशित एक दृष्टिकोण है। यह नेटवर्क सांस्थिकी आंकड़ा रखने के लिए तालिका रखता है जो प्रत्येक नोड के बीच एक नियमित आधार पर आदान-प्रदान होता है। उदाहरण के लिए: डी एस डी वी, ओ एल एस आर, डब्ल्यू आर पी, आदि।

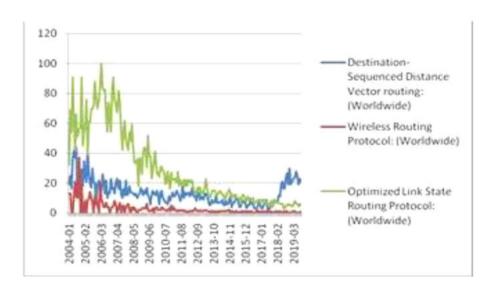
2.2 प्रतिकियाशील मार्गन प्रोटोकॉल

सिक्रिय प्रोटोकॉल में प्रतिक्रियाशील मार्ग प्रोटोकॉल के उपिर भाग को कम करते हैं। यह दूरी-सिदिश मार्गन एल्गोरिदम का उपयोग करता है और लक्ष्य को पथ निर्धारित करता है जब कोई नोड मार्ग की खोज शुरू करके इसका अनुरोध करता है। मनेट (MANET) [5] कई प्रतिक्रियाशील मार्ग प्रोटोकॉल प्रदान करता है जैसे कि डी एस आर, ए ओ डी वी, टी ओ आर ए और एल एम आर आदि।

2.3 संकर मार्गन प्रोटोकॉल

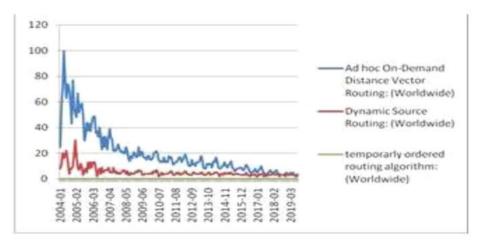
यह सिक्रय मार्ग प्रतिक्रियाशील प्रोटोकॉल का संयोजन है। जेड आर पी, बी जी पी, ई आई जी आर पी हाइब्रिड मार्गन प्रोटोकॉल के उदाहरण हैं।

क्र. सं.	मार्गन	विवरण	प्रकार	किस प्रकार के	लाभ	74.117
ж. с т.		144401	איייר	1.1-0.00 / 1.1-0.00 (1.1-0.	तान	नुकसान
	प्रोटोकॉल			नेटवर्क के लिए		
				उपयुक्त है		
1.	डी एस डी		0.0	छोटे नौड्स के	नेटवर्क में मार्गन	1. आवधिकों अद्यतन की
	वी	वेक्टर गंतव्य के लिए है।	200000 4225	साथ	तालिका (सूची)	आवश्यकता बनी रहती
		इस प्रोटोकॉल दूरी सदिश	प्रोटोकॉल	अनौपचारिक	के प्रत्येक नोड के	है।
		मार्गन तालिका का उपयोग		नेटवर्क	बीच स्थिरता	2. जब नेटवर्क निष्क्रिय
		करता है जिसकी प्रत्येक			बनी रहती है ।	होता है तो बैटरी की
		प्रविष्टि है एक साथ जुड़े				शक्ति तथा बैड विस्तार
		अनुक्रम संख्या जो गंतव्य				का इस्तेमाल होता रहता
		नोड द्वारा उत्पन्न होती है,				†
		के साथ जुड़ी होती है				3.यह बड़े गतिक नेटवर्क
						के लिए उपयुक्त है
2.	डबल्यू आर	यह वायरलेस रूटिंग	सक्रिय	छोटे नेटवर्क के	संदेशों के आदान-	1. सूचना के संग्रहण के
	पी	प्रोटोकॉल के लिए है। नेटवर्क	मार्गन	लिए उपयोगी	प्रदान की प्रक्रिया	लिए बड़ी क्षमता युक्ति
		पथ आकलन के लिए	प्रोटोकॉल		विश्वसनीय है।	में आवश्यकता होती है
		बेलमैन फोर्ड एल्गोरिश्म का				2. बड़े नेटवर्क के लिए
		उपयोग करके संशोधित दूरी				उपयुक्त नहीं है।
		सदिश मार्गन मिलता है।				
3.	ओ एल	यह अनुकूलित संपर्क	सक्रिय	बड़े नेटवर्क के लिए	1. उपरि लागत	अधिक प्रसंस्करण शक्ति
	एस आर	अवस्था मार्गन प्रोटोकॉल		उपयुक्त है	कों कम करता है	और बैंड विस्तार की
		के लिए हैं। ओ एल एस	प्रोटोकॉल		्र गंनगा गापना	आवश्यकता होती
		आर एक सक्रिय संपर्क			2. संचरण गुणवता में सुधार।	
		अवस्था मार्गन प्रोटोकॉल			113411	
		है, जो तदर्थ मोबाइल नेटवर्क				
		पर संपर्क अवस्था सूचना				
		को खोजने और फिर फैलाने				
		के लिए हैलो और सांस्थिकी				
		नियंत्रक (टीसी) संदेशों का				
		उपयोग करता है।				
4.	ए ओ डी	यह मार्गन प्रोटोकॉल की	प्रतिक्रियाशी	छोटे नेटवर्क तथा	उच्च गतिशील	बड़ी देरी के कारण स्थिरता
	वी	मांग पर तदर्थ के लिए बना	The same of the sa	गतिशील	सांस्थिकी के	की समस्या।
		है। इसमें दो चरण शामिल हैं:	प्रोटोकॉल	सांस्थिकी के लिए	अनुकूल	
		मार्ग खोज और मार्ग		उपयुक्त है।		
		रखरखाव।				
				8		L

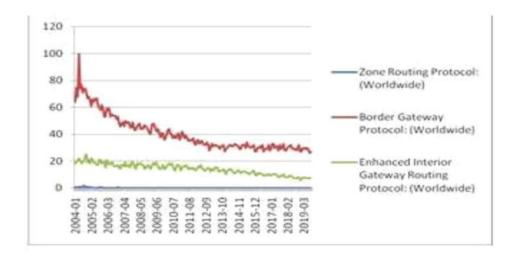

तालिका ।: मनेटस (MANETS) में प्रयुक्त विभिन्न मार्गन प्रोटोकॉल की तुलना

मार्गन प्रोटोकॉल का उपयोग

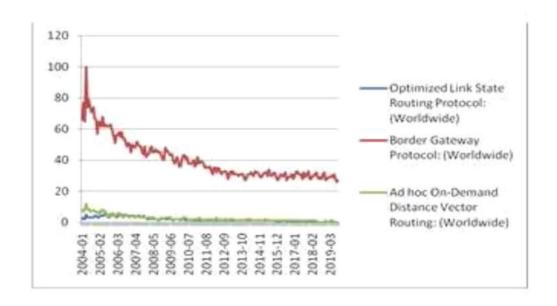
मार्गन प्रोटोकॉल जो चुना जाता है, नेटवर्क के प्रदर्शन पर असर पड़ सकता है। इस पत्र में, हम डी एस डी वी, डबल्यू आर पी, ए ओ डी वी, ओ एल एस आर मार्गन का तुलनात्मक अध्ययन करते हैं मार्गन प्रोटोकॉल के प्रकार, फायदे, नुकसान, उपयुक्तता किस प्रकार के नेटवर्क और मार्गन प्रोटोकॉल की विशेषताएं के संबंध में प्रोटोकॉल।


4. मार्गन प्रोटोकॉल्स की तुलना

शोध के इस अनुच्छेद में मनेट (MANET) में विभिन्न मार्ग प्रोटोकॉल के बीच तुलना प्रदान करता है। तुलना दुनिया भर में विशेष मार्गन प्रोटोकॉल के लिए लोगों द्वारा की गई वेब खोज पर आधारित है। इन शोधकर्ताओं के माध्यम से यह, निष्कर्ष निकालने में सक्षम है कि कौन-सा मार्ग प्रोटोकॉल, लोगों के बीच सबसे लोकप्रिय है। नीचे दिए गए आंकड़े प्रोटोकॉल के बीच तुलना दर्शाते हैं:


चित्र 2: डीएसडीवी, डब्ल्यूआरपी, ओएलएसपी मार्गन प्रोटोकॉल की त्लना

चित्र 1 एक ऐसा ग्राफ दिखाता है जो अनुक्लित संपर्क अवस्था मार्गन प्रोटोकॉल को 2017 में मनेट (MANET) में अन्य सिक्रय प्रोटोकॉल के बीच व्यापक रूप से मार्गन प्रोटोकॉल का उपयोग करता है, लेकिन तब गंतव्य अनुक्रमित दूरी सिदश मार्गन प्रोटोकॉल वर्ष 2019 में अपनी उच्च स्तर की निरंतरता के कारण ध्यान आकर्षित करता है। मार्गन टेबल उपरोक्त ग्राफ पूरी दुनिया में वेब खोजों के आधार पर प्राप्त किया जाता है।


चित्र 3: ए ओ डी वी, डी एस आर, ती ओ आर ए मार्गन प्रोटोकॉल की तुलना

चित्र 2 में दिखाए गए ग्राफ के माध्यम से हम यह निष्कर्ष निकाल सकते हैं कि अन्य प्रतिक्रियाशील प्रोटोकॉल के बीच मनेट MANET में AODV मार्गन प्रोटोकॉल का उपयोग अक्सर किया जाता है क्योंकि यह नेटवर्क के सबसे गतिशील सांस्थिकी में लागू किया जा सकता है। TORA मार्गन प्रोटोकॉल कम से कम मनेट (MANET) में प्रतिक्रियाशील प्रोटोकॉल के बीच प्रोटोकॉल का उपयोग किया जाता है क्योंकि इसमें नेटवर्क में उच्च उपरि और अस्थायी स्व पाश शामिल होते हैं।

चित्र 4: जेड आर पी, बी जी आर, ई आई जी आर पी मार्गन प्रोटोकॉल की तुलना

उपरोक्त ग्राफ में दर्शाया गया है कि सीमा गेटवे प्रोटोकॉल को सभी अन्य संकर प्रोटोकॉल के बीच लोगों द्वारा व्यापक रूप से स्वीकार किया जाता है। ज़ोन मार्गन प्रोटोकॉल अन्य संकर प्रोटोकॉल के बीच कम से कम प्रसिद्ध प्रोटोकॉल है।

चित्र 5: ओएलएसपी, बीजीआर, एओडीवी मार्गन प्रोटोकॉल की तुलना

इस ग्राफ़ से यह स्पष्ट है कि बॉर्डर गेटवे प्रोटोकॉल की सभी श्रेणियों के बीच सबसे अधिक व्यापक रूप से इस्तेमाल किया जाने वाला प्रोटोकॉल है, अर्थात्, प्रतिक्रियाशील, सिक्रय और संकर प्रोटोकॉल। बीजीपी एक संकर मार्गन प्रोटोकॉल है जिसमें प्रोएक्टिव और प्रतिक्रियाशील प्रोटोकॉल की विशेषताएं या लक्षण शामिल हैं। बी जी पी का उपयोग दुनिया भर में विशाल नेटवर्क को प्रशासित करने के लिए किया जाता है।

5. निष्कर्ष

इस शोध पत्र के माध्यम से लेखक मोबाइल मार्गन नेटवर्क में उपयोग किए जाने वाले विभिन्न मार्गन प्रोटोकॉल की जांच करते हैं। सुविधाएँ, फायदे, नुकसान, सीमाएँ और उपयुक्त नेटवर्क प्रकार जिसमें एक विशेष मार्ग प्रोटोकॉल सबसे उपयुक्त है। इस पत्र की जांच से, बॉर्डर गेटवे प्रोटोकॉल मनेट (MANET) में सबसे अधिक बात की गई और प्रयुक्त प्रोटोकॉल के लिए निकला है। इन तुलनाओं के माध्यम से हमें पता चलता है कि संकर प्रोटोकॉल की अन्य श्रेणियों की तुलना में उच्च लोकप्रियता प्राप्त करते हैं क्योंकि इन प्रोटोकॉलों में प्रतिक्रियाशील और सिक्रय तथा निष्क्रिय दोनों प्रोटोकॉल के फायदे शामिल हैं।

भविष्य के काम के लिए, शोधकर्ता मनेट (MANET) में इस्तेमाल किए गए कुछ अन्य मार्गन प्रोटोकॉल को इंगित कर सकते हैं और विभिन्न प्रदर्शन पैरामीटर के आधार पर विभिन्न मार्गन प्रोटोकॉल की तुलना करने के लिए एक विस्तृत अनुकरण किया जाता है। इन मार्गन प्रोटोकॉल में कुछ सुधार उनकी सीमाओं को पार करने के लिए दिए गए।

संदर्भ

- E. Alotaibi and B.Mukherjee, "A survey on routing algorithms for wireless Ad-Hoc and mesh networks," Computer Networks: The International Journal of Computer and Telecommunications Networking, 56(2),2011, 940–965.
- M. Zhang and P. H. J. Chong, "Performance Comparison of Flat and Cluster-Based Hierarchical Ad Hoc Routing with Entity and Group Mobility," in Proc. of IEEE Communications Society conference on Wireless Communications & Networking, Budapest, Hungary, 2009, 2450-2455.
- R. O. Schmidt and M. A. S. Trentin, MANETs Routing Protocols Evaluation in a Scenario with High Mobility: MANET Routing Protocols Performance and Behaviour, Network Operations and Management Symposium, 2008. NOMS 2008. IEEE, Salvador, Bahia, 2008 883-886.
- Lalar S, Yadav A. K., Comparative Study of Routing Protocols in MANET, Orient.J. Comp. Sci. and Technol., 2017.
- Panda, I A Survey on Routing Protocols of MANETs by Using Qos Metrics, International Journal of Advanced Research in Computer Science and Software Engineering, 2, 2012 120-129.
- Aarti, Dr SS. & quot; Tyagi, Study Of Manet: Characteristics, challenges, application and security attacks. International Journal of Advanced Research in Computer Science and Software Engineering 3.5, 3) (5) 252-257, 2013.
- Shendurkar, Ms Ankita M., and Nitin R. Chopde. A Review of Black Hole and Worm Hole Attack on AODV Routing Protocol in MANET." International Journal of Engineering Trends and Technology. 9(8), 2014 394-399.
- Khemariya, Neelam, Ajay Khunteta, and Krishna Kumar Joshi.; A Robust Technique for Secure Routing Against Blackhole Attack in AODV Protocol for MANETs International Journal of Scientific & Engineering Research, 4, (6) 2013, 1179-1189.
- Singh, Pramod Kumar, and Govind Sharma. ;An Efficient Prevention of black hole problem in AODV routing protocol in MANET.; In 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, IEEE, 2012. 902-906..
- Sharma, Meenakshi, and Davinderjeet Singh. ;Implementation of a Novel Technique for a Secure Route by Detection of Multiple Blackhole Nodes in Manet; International Journal of Current Engineering and Technology, 4(1) 2014 56-59.
- Varshney, Tarun, Tushar Sharma, and Pankaj Sharma. ;Implementation of watchdog protocol with AODV in mobile ad hoc network; In Communication Systems and Network Technologies (CSNT),. IEEE, 2014 217-221...
- Aware, Anand A., and Kiran Bhandari. ;Prevention of Black hole Attack on AODV in MANET using hash function In Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), 2014 3rd International Conference on, IEEE, 2014.